TY - JOUR T1 - Optimization of Culture Conditions for Total Carotenoid Amount Using Response Surface Methodology in Green Microalgae / Ankistrodesmus convolutus AU - Demirel, Zeliha AU - Şener, Neslihan AU - İmamoğlu, Esra AU - Dalay, Meltem PY - 2022 DA - January DO - 10.26650/ASE2020785091 JF - Aquatic Sciences and Engineering JO - Aqua Sci Eng PB - Istanbul University WT - DergiPark SN - 2602-473X SP - 29 EP - 37 VL - 37 IS - 1 LA - en AB - Commercial carotenoids of green microalgae have become significant especially for their applica-tions in the cosmetic, pharmaceutical, food and feed industries. Effects of physical and chemical parameters on carotenoid contents in isolated microalgal species have been investigated. The variables of shaking rate, nitrogen concentration and light intensity affect biomass production and the synthesis of carotenoids in the green microalgae were investigated using the statistical design by Box-Behnken (BBD) employing Response Surface Methodology (RSM). Furthermore, the opti-mized cultivation conditions using BBD for Chlorella vulgaris, Ankistrodesmus convolutus, Dunaliel-la salina, Tetraselmis striata were determined using the spectrophotometric method to enhance carotenoid concentration. A. convolutus within the green algae was detected with the highest ca-rotenoid concentration. The optimum conditions results indicated that the growth of A. convolutus(0.55 mg/L) and production of total carotenoids (25.1138 mg/g biomass) were found at the stirrer rate of 100 rpm under the light intensity of 100 μE/m2s, and in the nutrient component of 8.82 mM NaNO3. These conditions were validated experimentally for total carotenoid yield (24.13 mg/g biomass). After that the production was performed in a flat-plate photobioreactor with a volume of 6L based on the optimized conditions and the carotenoid profile was defined by HPLC-DAD using standards such as violaxanthin, astaxanthin and β-carotene. This study proposes that the RSM ap-proach can be used to define optimal conditions for large-scale production of carotenoids by A. convolutus. KW - Chlorella vulgaris KW - Ankistrodesmus convolutus KW - Dunaliella salina KW - Tetraselmis striata KW - Carotenoid KW - Optimization KW - Photobioreactor CR - Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical reviews in food science and nutrition, 59(12), 1880-1902. [CrossRef] google scholar CR - Bajwa, K., Bishnoi, N. R., Kirrolia, A., Gupta, S., & Selvan, S. T. (2019). Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Applied Water Science, 9(5), 128. [CrossRef] google scholar CR - Cezare-Gomes, E. A., del Carmen Mejia-da-Silva, L., Perez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., & de Carvalho, J. C. M. (2019). Potential of Microalgae Carotenoids for Industrial Application. Applied biochemistry and biotechnology, 188(3), 602634. [CrossRef] google scholar CR - Chen, T., & Wang, Y. (2013). Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology. Food Science and Biotechnology, 22(5), 1-8. [CrossRef] google scholar CR - Coelho, D. D. F., Tundisi, L. L., Cerqueira, K. S., Rodrigues, J. R. D. S., Mazzola, P. G., Tambourgi, E. B., & Souza, R. R. D. (2019). Microalgae: Cultivation Aspects and Bioactive Compounds. Brazilian Archives of Biology and Technology, 62. [CrossRef] google scholar CR - Demirel, Z., Imamoglu, E., Deniz, İ., & Dalay, M. C. Optimization of Cryopreservation Process Using Response Surface Methodology for Chlorella saccharophila and Chlorella zofingiensis. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 405-412. [CrossRef] google scholar CR - Demirel, Z., Yilmaz, F. F., Ozdemir, G., & Dalay, M. C. (2018). Influence of Media and Temperature on the Growth and the Biological Activities of Desmodesmus protuberans (FE Fritsch & MF Rich) E. Hegewald. Turkish Journal of Fisheries and Aquatic Sciences, 18(10), 1195-1203. [CrossRef] google scholar CR - Di Lena, G., Casini, I., Lucarini, M., & Lombardi-Boccia, G. (2019). Carotenoid profiling of five microalgae species from large-scale production. Food research international, 120, 810-818. [CrossRef] google scholar CR - Erdoğan, A., Çağır, A., Dalay, M. C., & Eroğlu, A. E. (2015). Composition of carotenoids in Scenedesmus protuberans: Application of chromatographic and spectroscopic methods. Food analytical methods, 8(8), 1970-1978. [CrossRef] google scholar CR - Faraloni, C., & Torzillo, G. (2017). Synthesis of antioxidant carotenoids in microalgae in response to physiological stress. Carotenoids. IntechOpen, 143-157. [CrossRef] google scholar CR - Gonçalves, C. F., Menegol, T., & Rech, R. (2019). Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. Biocatalysis and agricultural biotechnology, 18, 101032. [CrossRef] google scholar CR - Keskin Gündoğdu, T., Deniz, I., Çalışkan, G., Şahin, E. S., & Azbar, N. (2016). Experimental design methods for bioengineering applications. Critical reviews in biotechnology, 36(2), 368-388. [CrossRef] google scholar CR - Novoveskâ, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine drugs, 17(11), 640. [CrossRef] google scholar CR - Saha, S. K., Ermis, H., & Murray, P. (2020). Marine microalgae for potential lutein production. Applied Sciences, 10(18), 6457. [CrossRef] google scholar CR - Senge, M., & Senger, H. (1990). Response of the photosynthetic apparatus during adaptation of Chlorella and Ankistrodesmus to irradiance changes. Journal of plant physiology, 136(6), 675-679. [CrossRef] google scholar CR - Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1. 1 under optimized culture conditions. PloS one, 14(9), e0221930. [CrossRef] google scholar CR - Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for biofuels, 11(1), 272. [CrossRef] google scholar CR - Şenaras, A. E. (2019). Parameter optimization using the surface response technique in automated guided vehicles. In Sustainable Engineering Products and Manufacturing Technologies (pp. 187-197). Academic Press. [CrossRef] google scholar CR - Şahin, S., Nasir, N. T. B. M., Erken, İ., Çakmak, Z. E., & Çakmak, T. (2019). Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Materials Research Express, 6(9), 095404. [CrossRef] google scholar CR - Takaichi, S. (2011). Carotenoids in algae: distributions, biosyntheses and functions. Marine drugs, 9(6), 1101-1118. [CrossRef] google scholar CR - Wang, L. J., Fan, Y., Parsons, R., Hu, G. R., Zhang, P. Y., & Li, F. L. (2018). A rapid method for the determination of fucoxanthin in diatom. Marine drugs, 16(1), 33. [CrossRef] google scholar CR - Wang, S., Cao, M., Wang, B., Deng, R., Gao, Y., & Liu, P. (2019). Optimization of growth requirements and scale-up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquaculture Research. [CrossRef] google scholar CR - Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology, 144(3), 307-313. [CrossRef] google scholar UR - https://doi.org/10.26650/ASE2020785091 L1 - https://dergipark.org.tr/en/download/article-file/1255954 ER -