TY - JOUR T1 - Some results on relative dual Baer property AU - Tribak, Rachid AU - Amouzegar, Tayyebeh PY - 2020 DA - September DO - 10.13069/jacodesmath.790751 JF - Journal of Algebra Combinatorics Discrete Structures and Applications PB - iPeak Academy WT - DergiPark SN - 2148-838X SP - 259 EP - 267 VL - 7 IS - 3 LA - en AB - Let $R$ be a ring.In this article, we introduce and study relative dual Baer property.We characterize $R$-modules $M$ which are $R_R$-dual Baer, where $R$ is a commutative principal ideal domain.It is shown that over a right noetherian right hereditary ring $R$, an $R$-module $M$ is $N$-dual Baer forall $R$-modules $N$ if and only if $M$ is an injective $R$-module.It is also shown that for $R$-modules $M_1$, $M_2$, $\ldots$, $M_n$ such that $M_i$ is $M_j$-projective for all$i > j \in \{1,2,\ldots, n\}$, an $R$-module $N$ is $\bigoplus_{i=1}^nM_i$-dual Baer if and only if $N$ is$M_i$-dual Baer for all $i\in \{1,2,\ldots,n\}$.We prove that an $R$-module $M$ is dual Baer if and only if $S=End_R(M)$ is a Baer ringand $IM=r_M(l_S(IM))$ for every right ideal $I$ of $S$. KW - Baer rings KW - Dual Baer modules KW - Relative dual Baer property KW - Homomorphisms of modules CR - [1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, vol. 13, Springer–Verlag, New York 1992. CR - [2] E. P. Armendariz, A note on extensions of Baer and P.P.–rings, J. Austral. Math. Soc. 18(4) (1974) 470–473. CR - [3] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159(1) (2001) 25–42. CR - [4] K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc. 33(2) (1972) 235–240. CR - [5] S. M. Khuri, Baer endomorphism rings and closure operators, Canad. J. Math. 30(5) (1978) 1070– 1078. CR - [6] I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York-Amsterdam 1968. CR - [7] G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38(11) (2010) 4005–4027. CR - [8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036–4058. CR - [9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge University Press 1990. CR - [10] S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004) 103–123. CR - [11] S. T. Rizvi, C. S. Roman, Baer property of modules and applications, Advances in Ring Theory (2005) 225–241. CR - [12] D. W. Sharpe, P. Vámos, Injective Modules, Cambridge University Press, Cambridge 1972. CR - [13] Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002) 1449–1460. CR - [14] D. K. Tütüncü and R. Tribak, On dual Baer modules, Glasgow Math. J. 52(2) (2010) 261–269. CR - [15] D. K. Tütüncü, P. F. Smith, S. E. Toksoy, On dual Baer modules, Contemp. Math. 609 (2014) 173–184. CR - [16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia 1991. UR - https://doi.org/10.13069/jacodesmath.790751 L1 - https://dergipark.org.tr/en/download/article-file/1275018 ER -