TY - JOUR T1 - A note on Terai's conjecture concerning primitive Pythagorean triples AU - Soydan, Gökhan AU - Le, Maohua PY - 2021 DA - August DO - 10.15672/hujms.795889 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 911 EP - 917 VL - 50 IS - 4 LA - en AB - Let $f,g$ be positive integers such that $f>g$, $\gcd(f,g)=1$ and $f\not\equiv g \pmod{2}$. In 1993, N. Terai conjectured that the equation $x^2+(f^2-g^2)^y=(f^2+g^2)^z$ has only one positive integer solution $(x,y,z)=(2fg,2,2)$. This is a problem that has not been solved yet. In this paper, using elementary number theory methods with some known results on higher Diophantine equations, we prove that if $f=2^rs$ and $g=1$, where $r,s$ are positive integers satisfying $2\nmid s$, $r\ge 2$ and $s<2^{r-1}$, then Terai's conjecture is true. KW - polynomial-exponential Diophantine equation KW - generalized Ramanujan-Nagell equation KW - primitive Pythagorean triple CR - [1] M.A. Bennett, J.S. Ellenberg and N.C. Ng, The Diophantine equation $A^4+2^\delta B^2=C^n$, Int. J. Number Theory, 6 (2), 311–338, 2010. CR - [2] X.G. Chen and M.H. Le, A note on Terai’s conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A, 74 (5), 80–81, 1998. CR - [3] H.W. Gould, Tables of combinatorial identities, https://web.archive.org/web/ 20190629193344/http://www.math.wvu.edu/~gould/ (Gould’s personal webpage). CR - [4] J.Y. Hu and H. Zhang, A conjecture concerning primitive Pythagorean triples, Int. J. Appl. Math. Stat. 52 (7), 38–42, 2014. CR - [5] M.H. Le, A note on the Diophantine equation $x^2+b^y=c^z$, Acta Arith. 71 (3), 253–257, 1995. CR - [6] M.H. Le, On Terai’s conjecture concerning Pythagorean numbers, Acta Arith. 100 (1), 41–45, 2001. CR - [7] M.H. Le and G. Soydan, A brief survey on the generazlized Lebesgue-Ramanujan- Nagell equation, Surv. Math. Appl. 15, 473–523, 2020. CR - [8] R. Lidl and H. Neiderreiter, Finite Fields, Cambridge Univ. Press, Cambridge, 1996. CR - [9] L.J. Mordell, Diophantine equations, Academic Press, London, 1969. CR - [10] G. Soydan, M. Demirci, I.N. Cangül and A. Togbé, On the conjecture of Jeśmanowicz, Int. J. Appl. Math. Stat. 56 (6), 46–72, 2017. CR - [11] N. Terai, A note on the Diophantine equation $x^2+q^m=p^n$, Acta Arith. 63 (4), 351–358, 1993. CR - [12] P.Z. Yuan, The Diophantine equation $x^2+b^y=c^z$, J. Sichuan Univ. Nat. Sci. 41 525–530, 1998 (in Chinese). CR - [13] P.Z. Yuan and J.B. Wang, On the Diophantine equation $x^2+b^y=c^z$, Acta Arith. 84 (2), 145–147, 1998. UR - https://doi.org/10.15672/hujms.795889 L1 - https://dergipark.org.tr/en/download/article-file/1294071 ER -