TY - JOUR T1 - The Duffin-Kemmer-Petiau DKP Equation Wavefunctions Solutions According to the Virial Theorem for a Spin- one Particle Interacting with a Potential V r =k r^n TT - Virial Teoremine Göre V r =krn Potansiyeli ile Etkileşen Bir Spin-bir Parçacığının Duffin-Kemmer- Petiau DKP Denkleminin Dalgafonksiyonları Çözümleri AU - Arslan, Hasan PY - 2019 DA - June DO - 10.7212/zkufbd.v9i2.1319 JF - Karaelmas Fen ve Mühendislik Dergisi PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2146-7277 SP - 190 EP - 200 VL - 9 IS - 2 LA - en AB - The DKP Eqution is written for a spin-one particle interacting with a potential V r =k r^n. The written equation is solved for this potential according to the virial theorem. The ten – component wavefunctions are obtained. KW - Virial Theorem KW - DKP Equation KW - Wavefunctions. N2 - DKP Eşitliği, potansiyel V r =krn ile etkileşime giren bir spin-parçacık için yazılmıştır. Yazılı denklem bu potansiyel için virial teoremine göre çözülür. On bileşenli dalga fonksiyonları elde edilir CR - Al-Khasawneh, BY., Altaie, MB. 2012. Investigating the Gravitational Properties of Dark Matter. MSc Thesis, Yarmouk University. CR - Arslan, H. 2011. A Unified Equation of Interactions. OJM., 1: 28. CR - Arslan, H. 2013. The Dirac Equation with the Scattered Electron Including Extra Potential Energy Comes from the Virial Theorem. J. Mod. Phys., 4.4. CR - Arslan, H. 2013. The Distances in the Stable Systems Due to the Virial Theorem. Applied Math., 4(4). CR - Arslan, H. 2014. The Dirac Equation According to the Virial Theorem for a Poential V= n krn. Adv. Stud. Theor. Phys., 8(22): 983-989. CR - Arslan, H., Hulaguhanoglu, N. 2015. The Wavefunctions and Energy Eigenvalues of the Schrodinger Equation for Different Potentials Due to the Virial Theorem. Acta Phys. Pol., A, 127(4): 914-916. CR - Arslan, H. 2016. An alternative model of the concentric spherical shell universes according to the virial theorem. Phys. Essays, 29(2): 252-255. CR - Arslan, H., Arslan, MF. 2016. The Duffin‐Kemmer‐Petiau equation (DKP) wavefunctions solutions according to the virial theorem for a spinless boson particle interacting with a potential V (r)= k r n. Phys. Essays, 29(1): 10-13. CR - Bahcall, JN. 1961. Virial Theorem for Many-Electron Dirac Systems. Physical Rev., 124: 923-924. CR - Balinsky, AA., Evans, WD. 1998. On the virial theorem for the relativistic operator of Brown and Ravenhall, and the absence of embedded eigenvalues. Lett. Math. Phys., 44(3): 233-248. CR - Barshalom, A., Oreg, J. 2009. The relativistic virial theorem in plasma EOS calculations. High Energ Dens Phys., 5(3): 196- 203. CR - Stokes, JD., Dahal,HP., Balatsky, AV., Bedell, KS. 2013. The virial theorem in graphene and other Dirac materials. Philos. Mag. Let., 93(12): 672-679. CR - Thornton, ST., Marion, JB. 2004. Classical Dynamics of Particles and Systems, Thomson Learning, Belmont. CR - Yaşuk, F., Berkdemir, C., Berkdemir, A., Önem, C. 2005. Exact solutions of the Duffin–Kemmer–Petiau equation for the deformed hulthen potential. Phys. Scr., 71(4): 340. CR - Weislinger, E., Olivier, G. 1974. The classical and quantum mechanical virial theorem. Int. J. Quantum Chem., 8(8): 389- 401. CR - Weislinger, E., Olivier, G. 1975. The virial theorem with boundary conditions applications to the harmonic oscillator and to sine‐shaped potentials. Int. J. Quantum Chem. 9(9): 425-433. CR - J. Mathematical Phys. 34(5): 1791-1793. CR - Shabaev, VM. 2002. Virial relations for the Dirac equation and their applications to calculations of H-like atoms. arXiv preprint physics/0211087. UR - https://doi.org/10.7212/zkufbd.v9i2.1319 L1 - https://dergipark.org.tr/en/download/article-file/1328861 ER -