TY - JOUR T1 - Voltage Stability Analysis of Large Scale PV Plant Reactive Power Control Methods AU - Sahın, Erdinc AU - Çavdar, Bora AU - Akyazı, Ömür AU - Nuroglu, Fatih PY - 2021 DA - August Y2 - 2021 DO - 10.16984/saufenbilder.808343 JF - Sakarya University Journal of Science JO - SAUJS PB - Sakarya University WT - DergiPark SN - 2147-835X SP - 914 EP - 925 VL - 25 IS - 4 LA - en AB - The increasing integration of photovoltaic (PV) plants in conventional power systems has led to the need to examine the effects of these plants on the system dynamics. In this study, a well-known IEEE-9 bus power system is modified by integrating PV plant in DigSilent Powerfactory environment. Then, 3 transient cases are tested by using PV plant control units designed by Western Electricity Coordinating Council (WECC). The effect of load and line transient disconnections and 3-phase short circuit fault on modified power system are investigated as case-I, case-II, and case-III, respectively. In all cases, two sub-cases are considered according to the location. As a result, comparison of PV system reactive power control methods (RPCM) is analyzed in terms of voltage stability in these 3 cases. KW - Reactive power control methods KW - IEEE-9 bus power system with large scale PV integration KW - voltage stability KW - 3-phase short circuit fault KW - transient line and load disconnection KW - distance factor CR - [1] M. Dreidy, H. Mokhlis and Saad Mekhilef, "Inertia response and frequency control techniques for renewable energy sources: A review." Renewable and Sustainable Energy Reviews, vol 69, pp. 144-155, March 2017, doi: 10.1016/j.rser.2016.11.170 CR - [2] S. You et al., "Impact of high PV penetration on U.S. eastern interconnection frequency response," 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 2017, pp. 1-5, doi: 10.1109/PESGM.2017.8273793. CR - [3] H. Patel and V. Agarwal, "MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics," in IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 302-310, March 2008, doi: 10.1109/TEC.2007.914308. CR - [4] WECC Renewable Energy Modeling Task Force, “Central station photovoltaic power plant model balidation guideline” March 2015. [Online]. Available: https://www.wecc.org/Reliability/150318 WECC Pv Plant Model Val Guide Rev2.pdf CR - [5] R. Shah, N. Mithulananthan, R. C. Bansal and V. K. Ramachandaramurthy, "A review of key power system stability challenges for large-scale PV integration." Renewable and Sustainable Energy Reviews, vol 41, pp. 1423-1436, January 2015, doi: 10.1016/j.rser.2014.09.027. CR - [6] P. Kundur et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions," in IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981. CR - [7] Z. Conka, V. Kohan and M. Kolcun, "Impact of photovoltaic power plants on voltage stability of power system," 2019 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, 2019, pp. 79-84, doi: 10.1109/CANDO-EPE47959.2019.9111014. CR - [8] G. Lammert, D. Premm, L. D. P. Ospina, J. C. Boemer, M. Braun and T. Van Cutsem, "Control of Photovoltaic Systems for Enhanced Short-Term Voltage Stability and Recovery," in IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 243-254, March 2019, doi: 10.1109/TEC.2018.2875303. CR - [9] G. Lammert et al., "Impact of fault ride-through and dynamic reactive power support of photovoltaic systems on short-term voltage stability," 2017 IEEE Manchester PowerTech, Manchester, 2017, pp. 1-6, doi: 10.1109/PTC.2017.7980926. CR - [10] Y. Xue, M. Manjrekar, C. Lin, M. Tamayo and J. N. Jiang, "Voltage stability and sensitivity analysis of grid-connected photovoltaic systems," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-7, doi: 10.1109/PES.2011.6039649. CR - [11] K. Kawabe, Y. Ota, A. Yokoyama and K. Tanaka, "Short-term voltage stability improvement by active and reactive power control using advanced fault ride-through capability of photovoltaic systems," 2016 Power Systems Computation Conference (PSCC), Genoa, 2016, pp. 1-8, doi: 10.1109/PSCC.2016.7540842. CR - [12] E. Youssef, R. M. El Azab and A. M. Amin, "Comparative study of voltage stability analysis for renewable energy grid-connected systems using PSS/E," SoutheastCon 2015, Fort Lauderdale, FL, 2015, pp. 1-6, doi: 10.1109/SECON.2015.7133012. CR - [13] Y. Liu, W. Qin, X. Han and P. Wang, "Modelling of large-scale wind/solar hybrid system and influence analysis on power system transient voltage stability," 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, 2017, pp. 477-482, doi: 10.1109/ICIEA.2017.8282892. CR - [14] P. Kayal and C. K. Chanda, "Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement." International Journal of Electrical Power & Energy Systems, vol 53, pp. 795-809, December 2013, doi: 10.1016/j.ijepes.2013.05.047 CR - [15] X. Chen, Y. Cui, X. Wang and S. Li, "Research of low voltage ride through control strategy in photovoltaic(PV) grid," 2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 5146-5150, doi: 10.1109/CAC.2017.8243693. CR - [16] S. Eftekharnejad, V. Vittal, G. T. Heydt, B. Keel and J. Loehr, "Impact of increased penetration of photovoltaic generation on power systems," in IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 893-901, May 2013, doi: 10.1109/TPWRS.2012.2216294. CR - [17] B. Tamimi, C. Cañizares and K. Bhattacharya, "System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada," in IEEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 680-688, July 2013, doi: 10.1109/TSTE.2012.2235151. CR - [18] Y. T. Tan and D. S. Kirschen, "Impact on the Power System of a Large Penetration of Photovoltaic Generation," 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, 2007, pp. 1-8, doi: 10.1109/PES.2007.385563. CR - [19] S. Soni, G. G. Karady, M. Morjaria and V. Chadliev, "Comparison of full and reduced scale solar PV plant models in multi-machine power systems," 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, 2014, pp. 1-5, doi: 10.1109/TDC.2014.6863299. CR - [20] J. Dai, Y. Tang, Y. Xu and Q. Yan, "Reactive Power Optimization Coordinated Control Strategy of the Large-Scale PV Power Station," 2018 International Conference on Power System Technology (POWERCON), Guangzhou, 2018, pp. 1632-1637, doi: 10.1109/POWERCON.2018.8602233. CR - [21] Y. Zhou, Y. Li, D. Yu and J. Liu, "MPPT-considered detailed models of large-scale photovoltaic plants and its application in power system small-signal stability analysis," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016, pp. 1-6. CR - [22] J. Machowski, Z. Lubosny, J. W. Bialek and J. R. Bumby, “Voltage Stability” in Power System Dynamics: Stability and Control, John Wiley & Sons, 2020. CR - [23] DigSILENT Powerfactory, “Digsilent Powerfactory,” 2020. CR - [24] M. Ding, Z. Xu, W. Wang, X. Wang, Y. Song and D. Chen, "A review on China׳ s large-scale PV integration: Progress, challenges and recommendations." Renewable and Sustainable Energy Reviews, vol 53, pp. 639-652, January 2016, doi: 10.1016/j.rser.2015.09.009 CR - [25] WECC Renewable Energy Modeling Task Force, “WECC solar plant dynamic modeling guidelines,” April 2014. [Online]. Available: https://www.wecc.org/Reliability/WECC Solar Plant Dynamic Modeling Guidelines.pdf CR - [26] G. Lammert, Modelling, “Control and Stability Analysis of Photovoltaic Systems in Power System Dynamic Studies” Energy Management and Power System Operation vol. 9. Kassel Univ. Press GmbH, 2019. CR - [27] WECC Renewable Energy Modeling Task Force, “WECC solar PV dynamic model specification” September 2012. [Online]. Available: https://www.wecc.org/Reliability/WECC Solar PV Dynamic Model Specification - September 2012.pdf CR - [28] WECC Renewable Energy Modeling Task Force, “WECC PV plant power flow modeling guidelines,” August 2010. [Online.] Available: https://www.wecc.org/Reliability/WECC PV Plant Power Flow Modeling Guidelines - August 2010.pdf CR - [29] J. Keller and B. Kroposki, “Understanding fault characteristics of inverter-based distributed energy resources” No. NREL/TP-550-46698. National Renewable Energy Lab.(NREL), Golden, CO (United States), January 2010. UR - https://doi.org/10.16984/saufenbilder.808343 L1 - https://dergipark.org.tr/en/download/article-file/1337126 ER -