TY - JOUR T1 - Beklenen Aralığa Dayanan Aralık Tip II Üssel Bulanık Sayının Aralık Tip II Parametrik Yamuk Bulanık Sayı Yakınsaması TT - Interval Type II Parametric Trapezoidal Fuzzy Number Approximation of Interval Type II Exponential Fuzzy Number Based on The Expected Interval AU - Peker, Sinem AU - Nasiboğlu, Efendi PY - 2021 DA - June DO - 10.33484/sinopfbd.817174 JF - Sinop Üniversitesi Fen Bilimleri Dergisi JO - Sinop Uni J Nat Sci PB - Sinop University WT - DergiPark SN - 2536-4383 SP - 21 EP - 32 VL - 6 IS - 1 LA - tr AB - Tip I bulanık sayıları belirsizliği ele almak için bazı karar verme problemlerinde kullanılmaktadır. Tip I bulanık sayılarının üyelik dereceleri adi sayılardır. Ancak gerçek yaşam problemlerinde, üyelik derecelerinin bulanık sayılar ile gösterilebileceği olaylar var olabilir. Bu gibi durumlarda, Tip II bulanık sayıları kullanılabilir. Bulanık sayının daha basit bir formunun kullanılması bazı çalışmalarda karmaşık hesaplamalardan kaçınmak için bir avantaj olarak görülmektedir. Bu durum dikkate alınarak, bu çalışmada aralık Tip II üssel bulanık sayının aralık Tip II parametrik yamuk bulanık sayı yakınsaması, beklenen aralıkların eşitliklerinin kullanıldığı bir kısıtlı optimizasyon problemi ile bulunmuş ve formüller verilmiştir. KW - Tip II bulanık sayı KW - üssel bulanık sayı KW - parametrik yamuk bulanık sayı KW - optimizasyon KW - yakınsama KW - optimizasyon N2 - Type I fuzzy numbers are used in some decision-making problems to handle the uncertainty. The membership degrees of Type I fuzzy numbers are crisp numbers. However, the events in which the membership degrees may be shown by fuzzy numbers may exist in the real life problems. In that cases, the Type II fuzzy numbers can be used. The usage of the simpler form of the fuzzy number is seen as an advantage for the avoiding of complex calculations in some studies. Considering this, the interval Type II parametric trapezoidal fuzzy number approximation of the interval Type II exponential fuzzy number has been found by a constrained optimization problem in which the equalities between expected intervals are used and the formulas have been given in this study. CR - Ban, A. I., Coroianu, L., & Khastan, A. (2016). Conditioned weighted L–R approximations of fuzzy numbers. Fuzzy Sets and Systems, 283, 56-82. https://doi.org/10.1016/j.fss.2015.03.012 CR - Nasibov, E. N., & Peker, S. (2008). On the nearest parametric approximation of a fuzzy number. Fuzzy Sets and Systems, 159(11), 1365-1375. https://doi.org/10.1016/j.fss.2007.08.005 CR - Hao, Z., Xu, Z., Zhao, H., & Zhang, R. (2021). The context-based distance measure for intuitionistic fuzzy set with application in marine energy transportation route decision making. Applied Soft Computing, 101, Article 107044. https://doi.org/10.1016/j.asoc.2020.107044 CR - Krawczak, M., & Szkatuła, G. (2020). On matching of intuitionistic fuzzy sets. Information Sciences, 517, 254-274. https://doi.org/10.1016/j.ins.2019.11.050 CR - Alcantud, J. C. R., Khameneh, A. Z., & Kilicman, A. (2020). Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Information Sciences, 514, 106-117. https://doi.org/10.1016/j.ins.2019.12.008 CR - Sodenkamp, M. A., Tavana, M., & Di Caprio, D. (2018). An aggregation method for solving group multi-criteria decision-making problems with single-valued neutrosophic sets. Applied Soft Computing, 71, 715-727. https://doi.org/10.1016/j.asoc.2018.07.020 CR - Grzegorzewski, P. (2002). Nearest interval approximation of a fuzzy number. Fuzzy Sets and systems, 130(3), 321-330. https://doi.org/10.1016/S0165-0114(02)00098-2 CR - Hai, S., Gong, Z., & Chen, Z. (2020). Weighted pseudometric approximation of 2-dimensional fuzzy numbers by fuzzy 2-cell prismoid numbers preserving the centroid. Fuzzy Sets and Systems, 387, 158-173. https://doi.org/10.1016/j.fss.2018.12.013 CR - Liu, X., & Lin, H. (2007). Parameterized approximation of fuzzy number with minimum variance weighting functions. Mathematical and computer modelling, 46(11-12), 1398-1409. https://doi.org/10.1016/j.mcm.2007.01.011 CR - Coroianu, L., & Stefanini, L. (2016). General approximation of fuzzy numbers by F-transform. Fuzzy Sets and Systems, 288, 46-74. https://doi.org/10.1016/j.fss.2015.03.015 CR - Chanas, S. (2001). On the interval approximation of a fuzzy number. Fuzzy Sets and Systems, 122(2), 353-356. https://doi.org/10.1016/S0165-0114(00)00080-4 CR - Coroianu, L., Gagolewski, M., & Grzegorzewski, P. (2013). Nearest piecewise linear approximation of fuzzy numbers. Fuzzy Sets and Systems, 233, 26-51. https://doi.org/10.1016/j.fss.2013.02.005 CR - Yeh, C. T., & Chu, H. M. (2014). Approximations by LR-type fuzzy numbers. Fuzzy Sets and Systems, 257, 23-40. https://doi.org/10.1016/j.fss.2013.09.004 CR - Huang, H., Wu, C., Xie, J., & Zhang, D. (2017). Approximation of fuzzy numbers using the convolution method. Fuzzy Sets and Systems, 310, 14-46. https://doi.org/10.1016/j.fss.2016.06.010 CR - Ban, A. (2008). Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval. Fuzzy Sets and Systems, 159(11), 1327-1344. https://doi.org/10.1016/j.fss.2007.09.008 CR - Ban, A. I., & Coroianu, L. (2015). Existence, uniqueness, calculus and properties of triangular approximations of fuzzy numbers under a general condition. International Journal of Approximate Reasoning, 62, 1-26. https://doi.org/10.1016/j.ijar.2015.05.004 CR - Grzegorzewski, P., & Pasternak-Winiarska, K. (2014). Natural trapezoidal approximations of fuzzy numbers. Fuzzy Sets and Systems, 250, 90-109. https://doi.org/10.1016/j.fss.2014.03.003 CR - Wang, G., & Li, J. (2017). Approximations of fuzzy numbers by step type fuzzy numbers. Fuzzy sets and systems, 310, 47-59. https://doi.org/10.1016/j.fss.2016.08.003 CR - Zhou, J., Miao, D., Gao, C., Lai, Z., & Yue, X. (2019). Constrained three-way approximations of fuzzy sets: From the perspective of minimal distance. Information Sciences, 502, 247-267. https://doi.org/10.1016/j.ins.2019.06.004 CR - Ban, A. I., & Coroianu, L. (2012). Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity. International Journal of Approximate Reasoning, 53(5), 805-836. CR - Peker, S., & Nasibov, E. (2019). Tip II genelleştirilmiş çan şekilli bulanık sayısının Tip II parametrik yamuk bulanık sayı yakınsanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 163-169. https://doi.org/10.19113/sdufenbed.466901 CR - Huang, S., Zhao, G., & Chen, M. (2018). A fast analytical approximation type-reduction method for a class of spiked concave type-2 fuzzy sets. International Journal of Approximate Reasoning, 103, 212-226. https://doi.org/10.1016/j.ijar.2018.10.002 CR - Wang, C. Y., & Wan, L. (2018). Type-2 fuzzy implications and fuzzy-valued approximation reasoning. International Journal of Approximate Reasoning, 102, 108-122. https://doi.org/10.1016/j.ijar.2018.08.004 CR - Dutta, P., & Limboo, B. (2017). Bell-shaped fuzzy soft sets and their application in medical diagnosis. Fuzzy Information and Engineering, 9(1), 67-91. https://doi.org/10.1016/j.fiae.2017.03.004 UR - https://doi.org/10.33484/sinopfbd.817174 L1 - https://dergipark.org.tr/en/download/article-file/1366613 ER -