TY - JOUR T1 - Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması TT - Investigation of the Loofah Reinforced Chitosan-Silk Hydrogel Composite Scaffolds for Cartilage Tissue Regeneration AU - Çolpankan Güneş, Oylum AU - Özer, İbrahim AU - Kara, Aylin AU - Ziylan, Aylin AU - Havıtçıoğlu, Hasan PY - 2021 DA - September DO - 10.21205/deufmd.2021236921 JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylul University WT - DergiPark SN - 1302-9304 SP - 937 EP - 950 VL - 23 IS - 69 LA - tr AB - Kıkırdak doku hasarlarının onarılmasındaki mevcut tedaviler, kıkırdağın kendi kendini iyileştirme kapasitesinin düşük olması nedeni ile sınırlıdır. Son yıllarda doku mühendisliği, kıkırdak rejenerasyonu için umut verici bir yaklaşım olarak önerilmektedir. Bu çalışmada, kıkırdak doku hasarları için lif kabağı ile güçlendirilmiş ipek fibroin/kitosan hidrojeller hazırlanmıştır. Biyouyumlu, biyolojik olarak parçalanabilir ipek fibroin ve kitosan polimerleri, doğal ve toksik olmayan bir çapraz bağlama maddesi olan genipin ile çapraz bağlanmıştır. Taramalı elektron mikroskobu (SEM) ve Fourier Dönüşümü Kızılötesi Spektroskopisi (FTIR) sırasıyla morfoloji ve kimyasal yapı karakterizasyonu için kullanılmıştır. Viskoelastik özelliklerin belirlenmesi için dinamik mekanik analiz cihazı (DMA) kullanılırken, iskelelerin mekanik özelliklerini incelemek için basma testi kullanılmıştır. Doku iskelelerinin sitotoksisitesi, hücre canlılığı ve çoğalması tavşan mezenkimal kök hücreleri kullanılarak LDH, WST ve kollajen testi ile araştırılmıştır. Üretilen hidrojel kompozit doku iskelelerinin tamamının birbirine bağlı mikro gözenekli bir yapıya sahip olduğu ve lif kabaklarının yapıya iyi entegre olduğu görülmektedir. Ağırlıkça %0,3 genipin ile çapraz bağlanan hidrojel kompozit doku iskelesi (L-CSG3), eklem kıkırdağıyla karşılaştırılabilir su içeriği (94,4±% 0,2), tan δ (1 Hz'de 0,18) ve basma modülü (5,5 MPa) değerleri göstermiştir. Ayrıca, in-vitro test sonuçlarına göre, bu hidrojel kompozit doku iskelesi, tavşan mezenkimal kök hücrelerinde gelişmiş canlılık göstermiştir. Sonuç olarak, bu hidrojel kompozit doku iskelesi, kıkırdak dokusu rejenerasyonu için umut vaat ettiği söylenebilir. KW - lif kabağı KW - kitosan KW - ipek KW - hidrojel doku iskelesi KW - kıkırdak rejenerasyonu N2 - Current therapies for the treatment of cartilage defects are limited due to the low self-healing capacity of cartilage. In recent years, tissue engineering has been proposed as a promising approach for cartilage regeneration. In this study, silk fibroin/chitosan hydrogels reinforced with luffa cylindrica were prepared for cartilage tissue defects. Biocompatible, biodegradable silk fibroin and chitosan polymers were cross-linked with genipin which is a natural and nontoxic cross-linking agent. Scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used for the characterization of the morphology and chemical structures, respectively. Dynamic mechanical analysis was used to determine the viscoelastic properties, while compression test was applied to examine the mechanical properties of the scaffolds. The cytotoxicity, viability and proliferation of rabbit mesenchymal stem cells on the scaffolds were investigated by LDH, WST, and collagen assay. All of the produced hydrogel composite scaffolds had an interconnected microporous structure and loofah nanofibers were well-integrated within the structure. The hydrogel composite scaffold cross-linked with 0.3% wt. genipin (L-CSG3) demonstrated comparable water content (94.4±0.2%), tan δ (0,18 at 1 Hz) and compressive modulus (5,5 MPa) values to that of articular cartilage. Besides, based on the in-vitro test results, this hydrogel composite scaffold showed enhanced viability on rabbit mesenchymal stem cells. Consequently, this hydrogel composite scaffold presented a great promise for cartilage tissue regeneration. CR - [1] Ahmadi, F., Giti, R., Mohammadi-Samani, S., Mohammadi, F. 2017. Biodegradable Scaffolds for Cartilage Tissue Engineering. Galen Medical Journal, Cilt. 6 (2), s. 70-80. DOI: 10.22086/GMJ.V6I2.696 CR - [2] Armiento, A., Stoddart, M., Alini, M., Eglin, D. 2017. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia, Cilt. 65, s. 1-20. DOI: 10.1016/j.actbio.2017.11.021 CR - [3] Seol, Y.J., Park, J.Y., Jeong, W., Kim, T.H., Kim, S.Y., Cho, D.W. 2015. Development of Hybrid Scaffolds Using Ceramic and Hydrogel for Articular Cartilage Tissue Regeneration. Journal of Biomedical Materials Research Part A, Cilt. 103 (4), s. 1404-1413. DOI: 10.1002/jbm.a.35276 CR - [4] Saladino, S., Di Leonardo, E., Salamone, M., Mercuri, D., Segatti, F., Ghersi, G. 2014. Formulation of Different Chitosan Hydrogels for Cartilage Tissue Repair. Chemical Engineering Transactions, Cilt. 38, s. 505-510. DOI: 10.3303/CET1438085 CR - [5] O'brien, F.J. 2011. Biomaterials & Scaffolds for Tissue Engineering. Materials Today, Cilt. 14 (3) s. 88-95. DOI: 10.1016/S1369-7021(11)70058-X CR - [6] Puppi, D., Chiellini, F., Piras, A., Chiellini, E. 2010. Polymeric Materials for Bone and Cartilage Repair. Progress in Polymer Science, Cilt. 35 (4), s. 403-440. DOI: 10.1016/j.progpolymsci.2010.01.006 CR - [7] Yang, J., Zhang, Y.S., Yue, K., Khademhosseini, A. 2017. Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering. Acta Biomaterialia, Cilt. 57, s. 1-25. DOI: 10.1016/j.actbio.2017.01.036 CR - [8] Vepari, C., Kaplan, D.L. 2007. Silk as a Biomaterial. Progress in Polymer Science, Cilt. 32 (8), s. 991-1007. DOI: 10.1016/j.progpolymsci.2007.05.013 CR - [9] Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M.A., Bonakdar, S. 2013. Enhanced Mechanical Properties of Thermosensitive Chitosan Hydrogel by Silk Fibers for Cartilage Tissue Engineering. Materials Science and Engineering: C, Cilt. 33 (8), s. 4786-4794. DOI: 10.1016/j.msec.2013.07.043 CR - [10] Bas, O., De-Juan-Pardo, E.M., Meinert, C., D’Angella, D., Baldwin, J.G., Bray, L.J., Wellard, R.M., Kollmannsberger, S., Rank, E., Werner, C. 2017. Biofabricated Soft Network Composites for Cartilage Tissue Engineering. Biofabrication, Cilt. 9 (2), s. 025014. DOI: 1088/1758-5090/aa6b15 CR - [11] 11. Butcher, A.L., Offeddu, G.S., Oyen, M.L. 2014. Nanofibrous Hydrogel Composites as Mechanically Robust Tissue Engineering Scaffolds. Trends in Biotechnology, Cilt. 32 (11), s. 564-570. DOI: 10.1016/j.tibtech.2014.09.001 CR - [12] Cecen, B., Kozaci, L.D., Yuksel, M., Ustun, O., Ergur, B.U., Havitcioglu, H. 2016. Biocompatibility and Biomechanical Characteristics of Loofah Based Scaffolds Combined with Hydroxyapatite, Cellulose, Poly-l-lactic acid with Chondrocyte-like Cells. Materials Science and Engineering: C, Cilt. 69, s. 437-446. DOI: 10.1016/j.msec.2016.07.007 CR - [13] Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., Sadiku, R. 2017. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Materials Science and Engineering: C, Cilt. 79, s. 958-971. DOI: 10.1016/j.msec.2017.05.096 CR - [14] Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M.G., Demitri, C. 2017. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science, Cilt. 2017, s. 1-8. DOI: /10.1155/2017/8410750 CR - [15] Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., Zhang, Y. 2015. Genipin-crosslinked Electrospun Chitosan Nanofibers: Determination of Crosslinking Conditions and Evaluation of Cytocompatibility. Carbohydrate Polymers, Cilt. 130, s. 166-174. DOI: 10.1016/j.carbpol.2015.05.039 CR - [16] Delgadillo-Armendariz, N.L., Rangel-Vazquez, N.A., Marquez-Brazon, E.A., Gascue, R-D. 2014. Interactions of Chitosan/Genipin Hydrogels During Drug Delivery: A QSPR Approach. Química Nova, Cilt. 37 (9), s. 1503-1509. DOI: 10.5935/0100-4042.20140243 CR - [17] Abdelwahab, O. 2014. Assessment of Raw Luffa as a Natural Hollow Oleophilic Fibrous Sorbent for Oil Spill Cleanup. Alexandria Engineering Journal, Cilt. 53 (1), s. 213-218. DOI: 10.1016/j.aej.2013.11.001 CR - [18] Botaro, V.R., Novack, K.M., Siqueira, E.J. 2012. Dynamic Mechanical Behavior of Vinylester Matrix Composites Reinforced by Luffa Cylindrica Modified Fibers. Journal of Applied Polymer Science, Cilt. 124 (3), s.1967-1975. DOI: 10.1002/app.35019 CR - [19] Vacanti, C. 2008. Musculoskeletal Tissue Regeneration: Biological Materials and Methods. Humana Press, 670s. CR - [20] Yan, L.P., Wang, Y.J., Ren, L., Wu, G., Caridade, S.G., Fan, J.B., Wang, L.Y., Ji, P.H., Oliveira, J.M., Oliveira, J.T. 2010. Genipin‐cross‐linked Collagen/Chitosan Biomimetic Scaffolds for Articular Cartilage Tissue Engineering Applications. Journal of Biomedical Materials Research Part A, Cilt. 95 (2), s. 465-475. DOI: 10.1002/jbm.a.32869 CR - [21] Sophia Fox, A.J., Bedi, A., Rodeo, S.A. 2009. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, Cilt. 1 (6), s. 461-468. DOI: 10.1177/1941738109350438 CR - [22] Yodmuang, S., McNamara, S.L., Nover, A.B., Mandal, B.B., Agarwal, M., Kelly, T-AN., Chao, P-hG., Hung, C., Kaplan, D.L., Vunjak-Novakovic, G. 2015. Silk Microfiber-reinforced Silk Hydrogel Composites for Functional Cartilage Tissue Repair. Acta Biomaterialia, Cilt. 11, s. 27-36. DOI: 10.1016/j.actbio.2014.09.032 CR - [23] Lee, C-T., Kung, P-H., Lee, Y-D. 2005. Preparation of Poly (vinyl alcohol)-chondroitin Sulfate Hydrogel as Matrices in Tissue Engineering. Carbohydrate Polymers, 61 (3), s. 348-354. DOI: 10.1016/j.carbpol.2005.06.018 CR - [24] Chen, K., Zhang, D., Yang, X., Zhang, X., Wang, Q. 2016. Research on Viscoelastic Behavior and Mechanism of Hydrogel Grafted with UHMWPE. Soft Materials, 14 (4), s. 244-252. DOI: 10.1080/1539445X.2016.1195408 CR - [25] Temple, D.K., Cederlund, A.A., Lawless, B.M., Aspden, R.M., Espino, D.M. 2016. Viscoelastic Properties of Human and Bovine Articular Cartilage: A Comparison of Frequency-Dependent Trends. BMC Musculoskeletal Disorders, Cilt. 17 (1), s. 419. DOI: 10.1186/s12891-016-1279-1 CR - [26] Bartnikowski, M., Wellard, R., Woodruff, M., Klein, T. 2015. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. Polymers, Cilt. 7 (12), s. 2650-2669. DOI: 10.3390/polym7121539 CR - [27] Dinescu, S., Gălăţeanu, B., Albu, M., Lungu, A., Radu, E., Hermenean, A., Costache, M. 2013. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds İmproved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration. BioMed Research International 2013. DOI: 10.1155/2013/598056 CR - [28] Kumar, P., Nagarajan, A., Uchil, P.D. 2018. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protocols, Cilt. 2018 (6), s. prot095497. DOI:10.1101/pdb.prot095497 CR - [29] Mabrouk, M., Beherei, H.H., Das, D.B. 2020. Recent Progress in the Fabrication Techniques of 3D Scaffolds for Tissue Engineering. Materials Science and Engineering: C, Cilt. 110, s. 110716. DOI: 10.1016/j.msec.2020.110716 CR - [30] Chen, J-L., Duan, L., Zhu, W., Xiong, J., Wang, D. 2014. Extracellular Matrix Production In Vitro in Cartilage Tissue Engineering. Journal of Translational Medicine, Cilt. 12 (1), s. 88. DOI:10.1186/1479-5876-12-88 CR - [31] Francis, S.L., Di Bella, C., Wallace, G.G., Choong, P.F. 2018. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Frontiers in Surgery, Cilt. 5, s. 70. DOI: 10.3389/fsurg.2018.00070 CR - [32] 32. Irawan, V., Sung, T-C., Higuchi, A., Ikoma, T. 2018. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Engineering and Regenerative Medicine, Cilt. 15 (6), s. 673-697. DOI: 10.1007/s13770-018-0135-9 UR - https://doi.org/10.21205/deufmd.2021236921 L1 - https://dergipark.org.tr/en/download/article-file/1384151 ER -