TY - JOUR T1 - Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators AU - Çetinkaya, Asena AU - Ahuja, Om P. PY - 2021 DA - March Y2 - 2021 DO - 10.33401/fujma.831447 JF - Fundamental Journal of Mathematics and Applications JO - Fundam. J. Math. Appl. PB - Fuat USTA WT - DergiPark SN - 2645-8845 SP - 17 EP - 24 VL - 4 IS - 1 LA - en AB - In this paper, we use the Faber polynomial expansion techniques to get the general Taylor-Maclaurin coefficient estimates for $|a_n|,\ (n\geq 4)$ of a generalized class of bi-univalent functions by means of $(p,q)-$calculus, which was introduced by Chakrabarti and Jagannathan. For functions in such a class, we get the initial coefficient estimates for $|a_2|$ and $|a_3|.$ In particular, the results in this paper generalize or improve (in certain cases) the corresponding results obtained by recent researchers. KW - Faber polynomial expansion KW - Bi-univalent functions KW - (p KW - q)-calculus CR - [1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983. CR - [2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, 2004. CR - [3] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002. CR - [4] R. Chakrabarti, R. Jagannathan, A (p;q)-oscillator realization of two parameter quantum algebras, J. Phys. A, 24 (1991), 711-718. CR - [5] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281. CR - [6] F. H. Jackson, q-difference equations, Amer. J. Math., 32(4) (1910), 305-314. CR - [7] G. Faber, Uber polynomische Entwickelungen, Math. Annalen, 57 (1903), 389-408. CR - [8] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179-222. CR - [9] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30(6) (2016), 1567-1575. CR - [10] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573. CR - [11] H. M. Srivastava, A. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. CR - [12] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. CR - [13] Ş. Altınkaya, S. Yalçın, Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p;q)-derivative operator, J. Nonlinear Sci. Appl., 10 (2017), 3067-3074. CR - [14] H. Airault, Remarks on Faber polynomials, Int. Math. Forum, 3(9) (2008), 449-456. CR - [15] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser I, 354 (2016), 365-370. CR - [16] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), 1-4. Article ID 190560. UR - https://doi.org/10.33401/fujma.831447 L1 - https://dergipark.org.tr/en/download/article-file/1415593 ER -