TY - JOUR T1 - Half inverse problems for the impulsive singular diffusion operator AU - Ergün, Abdullah AU - Amirov, Rauf PY - 2020 DA - December JF - Turkish Journal of Science JO - TJOS PB - Ahmet Ocak AKDEMİR WT - DergiPark SN - 2587-0971 SP - 186 EP - 198 VL - 5 IS - 3 LA - en AB - In this paper, we consider the inverse spectral problem for the impulsiveSturm-Liouville differential pencils on $\left[ 0,\pi\right] $ with theRobin boundary conditions and the jump conditions at the point $\dfrac{\pi}%{2}$. We prove that two potentials functious on the whole interval and theparameters in the boundary and jump conditions can be determined from a set ofeigenvalues for two cases: (i) The potentials is given on $\left(0,\dfrac{\pi}{4}\left( \alpha+\beta \right) \right) .$ (ii) The potentials isgiven on $\left( \alpha+\beta, \dfrac{\alpha+\beta}{2} \right) $, where$0 KW - Inverse spectral problems KW - Sturm-Liouville Operator KW - spectrum KW - uniqueness CR - Referans1. Amirov RK. On Sturm-Liouville operators with discontiniuity conditions inside an interval. Journal of Mathematical Analysis and Aplications. 317(1), 2006, 163-176. CR - Referans2. Amirov RK, Nabiev AA. Inverse problems for the quadratic pencil of the Sturm-Liouville equations with impulse, Abstract Applied Analysis. Art.ID 361989, 2013, 10 CR - Referans3. Freiling G, Yurko VA. Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point, Inverse Probl.18(3), 2002, 757-773. CR - Referans4. Levin BY. Lectures on Entire Functions, Transl. Math. Monographs. Amer. Math. Soc. Providence. 1996. CR - Referans5. Bellman R. Cooke KL. Differential-Difference Equations. Academic Press. New-York. 1963. CR - Referans6. Zhang R, Xu XC, Yang CF, Bondarenko NP. Determination of the impulsive Sturm-Liouville operator from a set of eigenvalues. J.Inverse and III-Posed Probl. 2019. CR - Referans7. Nabiev AA, Amirov RK. Integral representations for the solutions of the generalized Schroedinger equation in a finite interval, Advances in Pure Mathematics. 5(13), 2015, 777-795. CR - Referans8. Meshonav VP, Feldstein AI. Automatic Design of Directional Couplers. Moscow. Russian. 1980. CR - Referans9. Litvinenko ON, Soshnikov VI. The Theory of Heterogeneous Lines and Their Applications in Radio Engineering. Moscow. Russia. 1964. CR - Referans10. Krueger RJ. Inverse problems for nonabsorbing media with discontinuous material properties. Journal of Mathematical Physics. 23(3), 1982, 396-404. CR - Referans11. Shepelsky DG. The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions. Advances in Soviet Mathematics. 19, 1997, 303-309. CR - Referans12. Lapwood FR, Usami T. Free Oscillation of the Earth. Cambridge University Press. Cambridge. 1981. CR - Referans13. Borg G. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgable. Acta Mathamatica. 78, 1946, 1-96. CR - Referans14. McLaughlin JR. Analytical methods for recovering coefficients in differential equations from spectral data. SIAM. 28(1), 1986, 53-72. CR - Referans15. Hald OH. Discontinuous inverse eigenvalue problems, Communications on Pure and Applied Mathematics. 37(5), 1984, 539-577. CR - Referans16. Yurko VA. On higher-order differantial operators with a singular point. Inverse Problems. 9(4), 1993, 495-502. CR - Referans17. Rundell W, Sacks PE. Reconstruction techniques for classical inverse Sturm-Liouville problems. Math. Comp. 58(197), 1992, 161-183. CR - Referans18. Rundell W, Sacks PE. Reconstruction of a radially symmetric potential from two spectral sequences. J. Math. Anal. Appl. 264(2), 2001, 354-381. CR - Referans19. Yurko VA. Integral transforms connected with discontinuous boundary value problems. Integral Transform. Spec. Funct. 10(2), 2000, 141-164. CR - Referans20. H. Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM J. Appl. Math. 34, 1978. CR - Referans21. Hryniv RO, Mykytyuk YV. Half-inverse spectral problems for Sturm-Liouville operators with singular potentials. Inverse Problems. 20(5), 2004, 1423-1444. CR - Referans22. Martinyuk O, Pivovarchik V. On the Hochstadt-Lieberman theorem. Inverse Problems 26(3), 2010, Article ID 035011. CR - Referans23. Sakhnovich L. Half-inverse problems on the finite interval. Inverse Problems. 17(3), 2001, 527-532. CR - Referans24. Ambartsumyan VA. Über eine frage der eigenwerttheorie. Zeitschrift für Physik. 53, 1929, 690-695. CR - Referans25. Xu X-C, Yang C-F. Reconstruction of the Sturm-Liouville operator with discontinuities from a particular set of eigenvalues. Appl. Math. J. Chinese Univ. Ser. B. 33(2), 2018, 225-233. CR - Referans26. Yang C-F. Hochstadt-Lieberman theorem for Dirac operator with eigenparameter dependent boundary conditions. Nonlinear Anal. 74(7), 2011, 2475-2484. CR - Referans27. Koyunbakan H. Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl. 378, 2011, 549-554. CR - Referans28. Yang C-F, Zettl A. Half inverse problems for quadratic pencils of Stur-Liouville operators. Taiwanese Journal Of Mathematics. 16(5), 2012, 1829-1846. CR - Referans29. Yang C-F, Guo YX. Determination of a differential pencil from interior spectral data. J. Math. Anal. Appl. 375, 2011, 284-293. CR - Referans30. Yang C-F, Yang X-P. An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions. Appl. Math. Lett. 22(9), 2009, 1315-1319. CR - Referans31. Jonas P. On the spectral theory of operators associated with perturbed Klein-Gordon and wave type equations. J. Oper. Theory. 29, 1993, 207-224. CR - Referans32. Keldyshm M. V. On the eigenvalues and eigenfunctions of some classes of nonselffadjoint equations. Dokl. Akad. Nauk SSSR. 77, 1951, 11-14. CR - Referans33. Kostyuchenko AG, Shkalikov AA. Selfadjoint quadratic operator pencils and elliptic problems. Funkc. Anal. Prilozh. 17, 1983, 38-61. CR - Referans34. Marchenko VA. Sturm--Liouville Operators and Their Applications. Naukova Dumka, Kiev (1977). English transl. Birkh\"{a}user. Basel. 1986. CR - Referans35. Yamamoto M. Inverse eigenvalue problem for a vibration of a string with viscous drag. J. Math. Anal. Appl. 152, 1990, 20--34. UR - https://dergipark.org.tr/en/pub/tjos/issue//832057 L1 - https://dergipark.org.tr/en/download/article-file/1417613 ER -