TY - JOUR T1 - $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups AU - Ulusu, Uğur AU - Nuray, Fatih AU - Dündar, Erdinç PY - 2021 DA - March Y2 - 2021 DO - 10.33401/fujma.842104 JF - Fundamental Journal of Mathematics and Applications JO - Fundam. J. Math. Appl. PB - Fuat USTA WT - DergiPark SN - 2645-8845 SP - 45 EP - 48 VL - 4 IS - 1 LA - en AB - In this paper firstly, for functions defined on discrete countable amenable semigroups (DCASG), notions of $\mathfrak{I}$-limit and $\mathfrak{I}$-cluster points are introduced. Then, for the functions, notions of $\mathfrak{I}$-limit superior and inferior are examined. KW - Amenable semigroups KW - Folner sequence KW - I-Convergence KW - I-Cluster points KW - I-Limit points CR - [1] P. Kostyrko, T. Salat, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686. CR - [2] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (2005), 443–464. CR - [3] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165–172. CR - [4] M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509–544. CR - [5] S. A. Douglass, On a concept of summability in amenable semigroups, Math. Scand., 28 (1968), 96–102. CR - [6] P. F. Mah, Summability in amenable semigroups, Trans. Amer. Math. Soc., 156 (1971), 391–403. CR - [7] F. Nuray, B. E. Rhoades, Some kinds of convergence defined by Folner sequences, Analysis, 31(4) (2011), 381–390. CR - [8] E. Dündar, F. Nuray, U. Ulusu, I-convergent functions defined on amenable semigroups, (in review). CR - [9] I. Namioka, Følner’s conditions for amenable semigroups, Math. Scand., 15 (1964), 18–28. UR - https://doi.org/10.33401/fujma.842104 L1 - https://dergipark.org.tr/en/download/article-file/1452933 ER -