TY - JOUR T1 - Buckling Analysis of Intermediately Supported Nanobeams via Strain Gradient Elasticity Theory AU - Arda, Mustafa PY - 2020 DA - December Y2 - 2020 DO - 10.24107/ijeas.842499 JF - International Journal of Engineering and Applied Sciences JO - IJEAS PB - Akdeniz University WT - DergiPark SN - 1309-0267 SP - 163 EP - 172 VL - 12 IS - 4 LA - en AB - Buckling of axially loaded cantilever nanobeams with intermediate support have been studied in the current study. Higher order size dependent strain gradient theory has been utilized to capture the scale effect in nano dimension. Minimum total potential energy formulation has been used in modeling of nanobeam. Approximate Ritz method has been applied to the energy formulation for obtaining critical buckling loads. Position of the intermediate support has been varied and its effect on the critical buckling load has been investigated in the analysis. Mode shapes in critical buckling loads have been shown for various intermediate support positions. Present results could be useful in design of carbon nanotube resonators. KW - Nanobeam KW - Strain Gradient KW - Intermediate Support KW - Ritz Method CR - Ajiki H., Ando T., Energy Bands of Carbon Nanotubes in Magnetic Fields, Journal of the Physical Society of Japan, 65, 505–14, 1996. doi:10.1143/JPSJ.65.505 CR - Craighead H.G., Nanoelectromechanical Systems, Science, 290, 1532–5, 2000. doi:10.1126/science.290.5496.1532 CR - Huang X.M.H., Zorman C.A., Mehregany M., Roukes M.L., Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature, 421, 496–496, 2003. doi:10.1038/421496a CR - Ghorbanpour Arani A., Shokravi M., Vibration response of visco-elastically coupled double-layered visco-elastic graphene sheet systems subjected to magnetic field via strain gradient theory considering surface stress effects, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 229, 180–90, 2015. doi:10.1177/1740349914529102 CR - Arda M., Aydogdu M., Torsional statics and dynamics of nanotubes embedded in an elastic medium, Composite Structures, 114, 80–91, 2014. doi:10.1016/j.compstruct.2014.03.053 CR - Li C., Li S., Zhu Z., Prediction of mechanical properties of microstructures through a nonlocal stress field theory, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 229, 50–4, 2015. doi:10.1177/1740349913519437 CR - Kumar M., Reddy G.J., Kumar N.N., Bég O.A., Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with Ohmic dissipation, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 233, 49–63, 2019. doi:10.1177/2397791419843730 CR - Gul U., Aydogdu M., Gaygusuzoglu G., Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics, Composite Structures, 160, 1268–78, 2017. doi:10.1016/j.compstruct.2016.11.023 CR - Oterkus E., Diyaroglu C., Zhu N., Oterkus S., Madenci E., Utilization of Peridynamic Theory for Modeling at the Nano-Scale, 2015, p. 1–16. doi:10.1007/978-3-319-21194-7_1 CR - Cauchy A.-L., Mémoire sur les systèmes isotropes de points matériels. Oeuvres complètes, Cambridge University Press, 1882. doi:10.1017/CBO9780511702280.023 CR - Voigt W., Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 34, 3–52, 1887 CR - Cosserat E., Cosserat F., Theorie des corps dédormables. A. Hermann et fils, 1909 CR - Kunin I.A., Elastic Media with Microstructure I. vol. 26. Springer Berlin Heidelberg, 1982. doi:10.1007/978-3-642-81748-9 CR - Toupin R.A., Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17, 85–112, 1964. doi:10.1007/BF00253050 CR - Mindlin R.D., Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 51–78, 1964. doi:10.1007/BF00248490 CR - Kröner E., Elasticity theory of materials with long range cohesive forces, International Journal of Solids and Structures, 3, 731–42, 1967. doi:10.1016/0020-7683(67)90049-2 CR - Green A.E., Rivlin R.S., Multipolar continuum mechanics, Archive for Rational Mechanics and Analysis, 17, 113–47, 1964. doi:10.1007/BF00253051 CR - Eringen A.C., Edelen D.G.B., On nonlocal elasticity, International Journal of Engineering Science, 10, 233–48, 1972. doi:10.1016/0020-7225(72)90039-0 CR - Ru C.Q., Aifantis E.C., A simple approach to solve boundary-value problems in gradient elasticity, Acta Mechanica, 101, 59–68, 1993. doi:10.1007/BF01175597 CR - Altan B.S., Aifantis E.C., On Some Aspects in the Special Theory of Gradient Elasticity, Journal of the Mechanical Behavior of Materials, 8, 1997. doi:10.1515/JMBM.1997.8.3.231 CR - Aifantis E.C., Strain gradient interpretation of size effects, International Journal of Fracture, 95, 299–314, 1999 CR - Aifantis E.C., Higher Order Gradients and Self-Organization at Nano, Micro, and Macro Scales, Materials Science Forum, 123–125, 553–66, 1993. doi:10.4028/www.scientific.net/msf.123-125.553 CR - Akgöz B., Civalek Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49, 1268–80, 2011. doi:10.1016/j.ijengsci.2010.12.009 CR - Akgöz B., Civalek Ö., Buckling analysis of functionally graded microbeams based on the strain gradient theory, Acta Mechanica, 224, 2185–201, 2013. doi:10.1007/s00707-013-0883-5 CR - Akgöz B., Civalek Ö., A new trigonometric beam model for buckling of strain gradient microbeams, International Journal of Mechanical Sciences, 81, 88–94, 2014. doi:10.1016/j.ijmecsci.2014.02.013 CR - Mercan K., Civalek Ö., A Simple Buckling Analysis Of Aorta Artery, International Journal Of Engineering & Applied Sciences, 7, 34–34, 2015. doi:10.24107/ijeas.251256 CR - Demir Ç., Mercan K., Civalek O., Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel, Composites Part B: Engineering, 94, 1–10, 2016. doi:10.1016/j.compositesb.2016.03.031 CR - Mercan K., Civalek Ö., Buckling Analysis of Silicon Carbide Nanotubes (SiCNTs), International Journal Of Engineering & Applied Sciences, 8, 101–101, 2016. doi:10.24107/ijeas.252148 CR - Arda M., Aydogdu M., Buckling of Eccentrically Loaded Carbon Nanotubes, Solid State Phenomena, 267, 151–6, 2017. doi:10.4028/www.scientific.net/SSP.267.151 CR - Mercan K., Civalek Ö., Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ, Composites Part B: Engineering, 114, 34–45, 2017. doi:10.1016/j.compositesb.2017.01.067 CR - Mercan K., Civalek Ö., Comparison of small scale effect theories for buckling analysis of nanobeams, International Journal Of Engineering & Applied Sciences, 9, 87–97, 2017. doi:10.24107/ijeas.340958 CR - Mercan K., Numanoglu H.M., Akgöz B., Demir C., Civalek., Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix, Archive of Applied Mechanics, 87, 1797–814, 2017. doi:10.1007/s00419-017-1288-z CR - Civalek Ö., Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations, International Journal of Pressure Vessels and Piping, 113, 1–9, 2014. doi:10.1016/j.ijpvp.2013.10.014 CR - Arda M., Aydogdu M., Analysis of Free Torsional Vibration in Carbon Nanotubes Embedded in a Viscoelastic Medium, Advances in Science and Technology Research Journal, 9, 28–33, 2015. doi:10.12913/22998624/2361 CR - Ebrahimi F., Barati M.R., Civalek Ö., Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures, Engineering with Computers, 36, 953–64, 2020. doi:10.1007/s00366-019-00742-z CR - AlSaid-Alwan H.H.S., Avcar M., AlSaid-Alwan H.H.S., Avcar M., Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study, Computers and Concrete, 26, 285, 2020. doi:10.12989/CAC.2020.26.3.285 CR - Zhang J.S.Y.M.O., Analysis of orthotropic plates by the two-dimensional generalized FIT method, Computers and Concrete, 26, 421–7, 2020. doi:10.12989/CAC.2020.26.5.421 CR - Hadji L., Avcar M., Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions, J Appl Comput Mech, 0, 1–15, 2020. doi:10.22055/JACM.2020.35328.2628 CR - Arda M., Aydogdu M., Bending of CNTs Under The Partial Uniform Load, International Journal Of Engineering & Applied Sciences, 8, 21–21, 2016. doi:10.24107/ijeas.252142 CR - Arda M., Aydogdu M., Longitudinal Vibration of CNTs Viscously Damped in Span, International Journal Of Engineering & Applied Sciences, 9, 22–22, 2017. doi:10.24107/ijeas.305348 CR - Mercan K., Civalek Ö., What is The Correct Mechanical Model of Aorta Artery, International Journal Of Engineering & Applied Sciences, 9, 138–138, 2017. doi:10.24107/ijeas.322526 CR - Akgöz B., Civalek Ö., A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation, Composite Structures, 176, 1028–38, 2017. doi:10.1016/j.compstruct.2017.06.039 CR - Arda M., Vibration Analysis of an Axially Loaded Viscoelastic Nanobeam, International Journal Of Engineering & Applied Sciences, 10, 252–63, 2018. doi:10.24107/ijeas.468769 CR - Arda M., Aydogdu M., Dynamic stability of harmonically excited nanobeams including axial inertia, JVC/Journal of Vibration and Control, 25, 820–33, 2019. doi:10.1177/1077546318802430 CR - Arda M., Aydogdu M., Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium, Microsystem Technologies, 25, 3943–57, 2019. doi:10.1007/s00542-019-04446-8 CR - Jalaei M.H., Civalek., On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, International Journal of Engineering Science, 143, 14–32, 2019. doi:10.1016/j.ijengsci.2019.06.013 CR - Aydogdu M., Arda M., Filiz S., Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter, Advances in Nano Research, 6, 257–78, 2018. doi:10.12989/anr.2018.6.3.257 CR - Arda M., Aydogdu M., Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mechanics Based Design of Structures and Machines, 0, 1–17, 2020. doi:10.1080/15397734.2020.1728548 CR - Arda M., Axial dynamics of functionally graded Rayleigh-Bishop nanorods, Microsystem Technologies, 2, 2020. doi:10.1007/s00542-020-04950-2 CR - Civalek O., Yavas A., Large Deflection Static Analysis of Rectangular Plates On Two Parameter Elastic Foundations, International Journal of Science and Technology, 1, 43–50, 2006 CR - Civalek Ö., Kiracioglu O., Free vibration analysis of Timoshenko beams by DSC method, International Journal for Numerical Methods in Biomedical Engineering, 26, 1890–8, 2010. doi:10.1002/cnm.1279 CR - Mercan K., Demir Ç., Civalek Ö., Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique, Curved and Layered Structures, 3, 82–90, 2016. doi:10.1515/cls-2016-0007 CR - Civalek Ö., Avcar M., Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method, Engineering with Computers, 1–33, 2020. doi:10.1007/s00366-020-01168-8 CR - Civalek Ö., Uzun B., Yaylı M.Ö., Akgöz B., Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method, European Physical Journal Plus, 135, 381, 2020. doi:10.1140/epjp/s13360-020-00385-w CR - Wright E.M., Kantorovich L. V., Krylov V.I., Benster C.D., Approximate Methods of Higher Analysis, The Mathematical Gazette, 44, 145, 1960. doi:10.2307/3612589 CR - Arda M., Evaluation of optimum length scale parameters in longitudinal wave propagation on nonlocal strain gradient carbon nanotubes by lattice dynamics, Mechanics Based Design of Structures and Machines, 1–24, 2020. doi:10.1080/15397734.2020.1835488 UR - https://doi.org/10.24107/ijeas.842499 L1 - https://dergipark.org.tr/en/download/article-file/1454231 ER -