@article{article_844847, title={TÜRKİYE’DEKİ KELEBEK TÜRLERİNİN BASAMAKLI EVRİŞİMLİ SİNİR AĞLARI İLE SINIFLANDIRILMASI}, journal={Konya Journal of Engineering Sciences}, volume={9}, pages={568–587}, year={2021}, DOI={10.36306/konjes.844847}, author={Elmas, Bahadır}, keywords={Turkey Butterfly Species, Identification of butterfly species, Convolutional Neural Network, Pre-Trained Networks, Transfer Learning}, abstract={Kelebekler ekosistemdeki değişikliklere hızlı bir şekilde yanıt verebilme özelliğine sahiptir. Ayrıca çoğu kelebek türü larvaları, insan ve hayvanların yaşam ortamını ve gıda kaynaklarını etkileyen tarım ve orman zararlılarıdır. Bu nedenle kelebek türlerinin sınıflandırılması, tür araştırmalarının yanı sıra çevre koruma, tarım ve orman zararlılarının kontrolünde de önemlidir. Bu çalışmada Türkiye’deki 9 aile ve 416 kelebek türünü sınıflandırmak için yedi adet evrişimli sinir ağı transfer öğrenme yöntemiyle kullanılmıştır. Veri seti oluşturmak için 13528 görüntü toplanmış, veri artırma yöntemi ile görüntü sayısı 67640’a çıkarılmıştır. Eğitimde ezberlemenin önüne geçebilmek, ağların performansını ve güvenirliliğini artırmak için Stratified Shuffle Split, K fold cross validation yöntemleri kullanılmıştır. Tür sayısının fazlalığı, türlerin desen ve renk benzerliği nedeniyle ağların düşük başarı oranını artırmak için iki basamaklı ağ modeli kullanılmıştır. Modelde birinci basamakta bir, ikinci basamakta paralel bağlı dokuz ağ vardır. Birinci basamaktaki ailelere göre sınıflandırmada %95.88, ikinci basamaktaki tür sınıflandırmada ise %91.99 ile %100 arasında başarı oranı elde edilmiştir.}, number={3}, publisher={Konya Technical University}