@article{article_853905, title={Kategorik Veride Faktör Analizi İçin Kullanılabilecek Alternatif Bir Korelasyon Matrisi: Goodman-Kruskal Gamma}, journal={Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi}, volume={54}, pages={151–168}, year={2021}, DOI={10.15285/maruaebd.853905}, author={Kılıç, Abdullah Faruk}, keywords={Exploratory Factor Analysis, Correlation Matrix, Polychoric Correlation, Goodman-Kruskal Gamma, Goodman-Kruskal Lambda}, abstract={Açımlayıcı faktör analizi (AFA) sosyal bilimler alanında ölçeklerden elde edilen verilerin yapı geçerliğine yönelik kanıt toplama sürecinde sıklıkla kullanılmaktadır. Veriler kategorik olduğunda polikorik/tetrakorik korelasyon matrisiyle analizler gerçekleştirilirken veriler sürekli olduğunda Pearson korelasyon matrisiyle analizler gerçekleştirilmektedir. Ancak bazı durumlarda polikorik korelasyon matrisi kullanıldığında modelde yakınsama sağlanamamakta Pearson korelasyon matrisi kullanıldığında ise faktör yükleri olması gerekenden daha düşük kestirilmektedir. Bu nedenle polikorik ve Pearson korelasyon matrisine alternatif olarak Goodman-Kruskal Gamma ve Lambda katsayılarıyla gerçekleştirilen AFA sonuçlarının karşılaştırılması çalışmanın amacını oluşturmaktadır. Bu amaçla gerçekleştirilen Monte Carlo simülasyon çalışmasında; kategori sayısı, ortalama faktör yükü, örneklem büyüklüğü ve verilerin dağılımı değişkenleri simülasyon koşulu olarak belirlenmiştir. Araştırma sonucunda bazı koşullarda polikorik korelasyon matrisiyle gerçekleştirilemeyen AFA kestirimlerinin Goodman-Kruskal Gamma katsayısıyla oluşturulan matrisle yapılabildiği gözlenmiştir. Lambda katsayısı kullanıldığında ise bazı koşullarda kestirim yapılamamıştır. Kestirim yapılan koşullarda ise genellikle faktör yükleri olduğundan düşük kestirilmiştir. Kategori sayısının artmasıyla Goodman-Kruskal Gamma katsayısından elde edilen sonuçların daha az yanlı olduğu gözlenmiştir. Araştırmacılara kategorik veriyle AFA gerçekleştirilirken Goodman-Kruskal Gamma katsayısından elde edilecek sonuçların da incelemesi önerilebilir.}, number={54}, publisher={Marmara University}