@article{article_858467, title={Pure Extending Objects}, journal={Konuralp Journal of Mathematics}, volume={9}, pages={100–101}, year={2021}, author={Berktaş, Mustafa Kemal}, keywords={Finitely accessible category, Pure essential monomorphism, Nonsinguler object}, abstract={<div style="text-align:justify;"> <span style="font-size:14px;">In this paper we introduce two new concepts, namely, pure extending objects and $\mathcal{K}$-nonsingular objects and then, we prove that any pair of subisomorphic $\mathcal{K}$-nonsingular objects in a finitely accessible additive category with kernels $\mathcal{A}$ are isomorphic to each other if and only if for any object $Y$ and any pure extending $\mathcal{K}$-nonsingular object $X$, if $X$ and $Y$ are subisomorphic to each other then $X\cong Y$. </span> </div>}, number={1}, publisher={Mehmet Zeki SARIKAYA}