TY - JOUR T1 - Top-spray agglomeration process applications in food powders: A review of recent research advances AU - Atalar, İlyas AU - Yazıcı, Fehmi PY - 2021 DA - March JF - European Food Science and Engineering JO - Eur. Food. Sci. Eng. PB - International Society of Academicians WT - DergiPark SN - 2717-9869 SP - 18 EP - 25 VL - 2 IS - 1 LA - en AB - There is a rising demand for improving instant properties of powders which increase consumer appreciation, reduce losses during production and facilitate the processability of these powders. Fluidized bed agglomeration is used to produce large and porous dry agglomerates with improved instant properties. In this review, the applications of the wet agglomeration process for different food powder types were optimally scrutinized. Food powders were categorized in milk and milk products, cereals, fruits and vegetables and gum powders. The major findings of the studies and improved powder properties were emphasized in the review. This review is a supplementation to the adoption of this technique for the development of food powders with optimally instant properties. KW - wet agglomeration KW - food powders KW - binder type KW - instant properties CR - Atalar, I., & Yazici, F. (2018a). Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology. https://doi.org/10.1080/07373937.2018.1529038 CR - Atalar, I., & Yazici, F. (2018b). Influence of top spray fluidized bed agglomeration conditions on the reconstitution property and structure modification of skim yoghurt powder. Journal of Food Processing and Preservation, 42(1). https://doi.org/10.1111/jfpp.13414 CR - Barkouti, A., Turchiuli, C., Carcel, J. A., & Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 93(4–5), 523–535. https://doi.org/10.1007/s13594-013-0132-7 CR - Bellocq, B., Cuq, B., Ruiz, T., Duri, A., Cronin, K., & Ring, D. (2018). Impact of fluidized bed granulation on structure and functional properties of the agglomerates based on the durum wheat semolina. Innovative Food Science and Emerging Technologies, 45(May 2017), 73–83. https://doi.org/10.1016/j.ifset.2017.09.001 CR - Benković, M., Tušek, A. J., Belščak-Cvitanović, A., Lenart, A., Domian, E., Komes, D., & Bauman, I. (2015). Artificial neural network modelling of changes in physical and chemical properties of cocoa powder mixtures during agglomeration. LWT - Food Science and Technology, 64(1), 140–148. https://doi.org/10.1016/j.lwt.2015.05.028 CR - Chemache, L., Lecoq, O., Namoune, H., & Oulahna, D. (2019). Agglomeration properties of gluten-free flours under water addition and shearing conditions. Lwt, 110(November 2018), 40–47. https://doi.org/10.1016/j.lwt.2019.04.058 CR - Chen, Y., Yang, J., Dave, R. N., & Pfeffer, R. (2009). Granulation of cohesive Geldart group C powders in a Mini-Glatt fluidized bed by pre-coating with nanoparticles. Powder Technology, 191(1–2), 206–217. https://doi.org/10.1016/j.powtec.2008.10.010 CR - Cuq, B., Gaiani, C., Turchiuli, C., Galet, L., Scher, J., Jeantet, R., … Ruiz, T. (2013). Advances in Food Powder Agglomeration Engineering. Advances in Food and Nutrition Research (1st ed., Vol. 69). Copyright © 2013 Elsevier Inc. All rights reserved. https://doi.org/10.1016/B978-0-12-410540-9.00002-8 CR - Cuq, Bernard, Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150 CR - Dacanal, G. C., & Menegalli, F. C. (2009). Experimental study and optimization of the agglomeration of acerola powder in a conical fluid bed. Powder Technology, 188(3), 187–194. https://doi.org/10.1016/j.powtec.2008.04.076 CR - Dhanalakshmi, K., & Bhattacharya, S. (2014). Agglomeration of turmeric powder and its effect on physico-chemical and microstructural characteristics. Journal of Food Engineering, 120(1), 124–134. https://doi.org/10.1016/j.jfoodeng.2013.07.024 CR - Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441. https://doi.org/10.1080/10408391003646270 CR - Forny, L., Marabi, A., & Palzer, S. (2011). Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technology, 206(1–2), 72–78. https://doi.org/10.1016/j.powtec.2010.07.022 CR - Gong, Z., Zhang, M., Mujumdar, A., & Sun, J. (2008). Spray drying and agglomeration of instant bayberry powder. Drying Technology, 26(1), 116–121. https://doi.org/10.1080/07373930701781751 CR - Haas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., … Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104–115. https://doi.org/10.1016/j.powtec.2020.04.065 CR - Hafsa, I., Mandato, S., Ruiz, T., Schuck, P., Jeantet, R., Mejean, S., … Cuq, B. (2015). Impact of the agglomeration process on structure and functional properties of the agglomerates based on the durum wheat semolina. Journal of Food Engineering, 145, 25–36. https://doi.org/10.1016/j.jfoodeng.2014.08.005 CR - Jeong, G. Y., Bak, J. H., & Yoo, B. (2019). Physical and rheological properties of xanthan gum agglomerated in fluidized bed: Effect of HPMC as a binder. International Journal of Biological Macromolecules, 121, 424–428. https://doi.org/10.1016/j.ijbiomac.2018.10.048 CR - Ji, J., Cronin, K., Fitzpatrick, J., Fenelon, M., & Miao, S. (2015). Effects of fluid bed agglomeration on the structure modification and reconstitution behaviour of milk protein isolate powders. Journal of Food Engineering, 167, 175–182. https://doi.org/10.1016/j.jfoodeng.2015.01.012 CR - Ji, J., Fitzpatrick, J., Cronin, K., Maguire, P., Zhang, H., & Miao, S. (2016). Rehydration behaviours of high protein dairy powders: The influence of agglomeration on wettability, dispersibility and solubility. Food Hydrocolloids, 58, 194–203. https://doi.org/10.1016/j.foodhyd.2016.02.030 CR - Jiménez, T., Turchiuli, C., & Dumoulin, E. (2006). Particles agglomeration in a conical fluidized bed in relation with air temperature profiles. Chemical Engineering Science, 61(18), 5954–5961. https://doi.org/10.1016/j.ces.2006.05.007 CR - Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032 CR - Kim, Y. H., Kim, S. G., & Yoo, B. (2017). Effect of maltodextrin on physical properties of granulated xanthan gum prepared by fluidized-bed granulator. International Journal of Food Engineering, 13(8). https://doi.org/10.1515/ijfe-2017-0069 CR - Lee, H., & Yoo, B. (2020). Agglomerated xanthan gum powder used as a food thickener: Effect of sugar binders on physical, microstructural, and rheological properties. Powder Technology, 362, 301–306. https://doi.org/10.1016/j.powtec.2019.11.124 CR - Palzer, S. (2011). Agglomeration of pharmaceutical, detergent, chemical and food powders - Similarities and differences of materials and processes. Powder Technology, 206(1–2), 2–17. https://doi.org/10.1016/j.powtec.2010.05.006 CR - Park, J., & Yoo, B. (2020). Particle agglomeration of gum mixture thickeners used for dysphagia diets. Journal of Food Engineering, 279(January), 109958. https://doi.org/10.1016/j.jfoodeng.2020.109958 CR - Rayo, L. M., Chaguri e Carvalho, L., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT - Food Science and Technology, 63(1), 461–469. https://doi.org/10.1016/j.lwt.2015.03.059 CR - Saad, M. M., Barkouti, A., Rondet, E., Ruiz, T., & Cuq, B. (2011). Study of agglomeration mechanisms of food powders: Application to durum wheat semolina. Powder Technology, 208(2), 399–408. https://doi.org/10.1016/j.powtec.2010.08.035 CR - Szulc, K., & Lenart, A. (2013). Surface modification of dairy powders: Effects of fluid-bed agglomeration and coating. International Dairy Journal, 33(1), 55–61. https://doi.org/10.1016/j.idairyj.2013.05.021 CR - Turchiuli, C., Eloualia, Z., El Mansouri, N., & Dumoulin, E. (2005). Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology, 157(1–3), 168–175. https://doi.org/10.1016/j.powtec.2005.05.024 CR - Turchiuli, C., Smail, R., & Dumoulin, E. (2013). Fluidized bed agglomeration of skim milk powder: Analysis of sampling for the follow-up of agglomerate growth. Powder Technology, 238, 161–168. https://doi.org/10.1016/j.powtec.2012.02.030 CR - Yuksel, H., & Dirim, S. N. (2020). Application of the agglomeration process on spinach juice powders obtained using spray drying method. Drying Technology, 0(0), 1–16. https://doi.org/10.1080/07373937.2020.1832515 UR - https://dergipark.org.tr/en/pub/efse/issue//864340 L1 - https://dergipark.org.tr/en/download/article-file/1520009 ER -