TY - JOUR T1 - Effects of Biotin and Ascorbic Acid Applications on Haploid Embryo Induction in Semisolid and Double Layer Nutrient Media in Pepper (Capsicum annuum L.) Anther Culture AU - Çömlekçioğlu, Nuray AU - Demirkaya, Burcu PY - 2021 DA - June Y2 - 2021 DO - 10.31015/jaefs.2021.2.8 JF - International Journal of Agriculture Environment and Food Sciences JO - int. j. agric. environ. food sci. PB - Gültekin ÖZDEMİR WT - DergiPark SN - 2618-5946 SP - 191 EP - 196 VL - 5 IS - 2 LA - en AB - Generation of homozygous double haploid (DH) lines by androgenesis is a promising alternative to selfpollination programs across generations. Despite the routine use of anther culture in peppers, there are still many bottlenecks and improvements in methodology are required. The aim of this study was to determine the effects of the structure of the nutrient medium (semi-solid and double layer) and the addition of biotin and ascorbic acid to the nutrient media on obtaining haploid embryos by anther culture method. MS (Murashige and Skoog 1962) medium containing 4 mg l-1 NAA, 0.1 mg l-1 BAP, 0.25% activated charcoal, 30 g l-1 sucrose, and 10 mg l-1 AgNO3 (silver nitrate) were used as the basal nutrient medium. A total of 8 nutrient media compounds were studied using 0.05 mg l-1 biotin and 0.5 mg l-1 ascorbic acid separately or together in semi-solid and bi-layer (double-phase) nutrient media. Solidification of nutrient media was achieved with 7 g 1-1 agar. The cultured anthers were subjected to high-temperature pre-treatments at 35 °C in continuous dark conditions for 2 days. Then they were taken to a climate chamber at of 25 °C temperature adjusted to 16/8 hour photoperiod. It has been observed that the success of obtaining embryos of semi-solid medium was higher than double-layer medium. The addition of biotin and ascorbic acid to the nutrient medium provided 8.8 fold increases in embryo regeneration compared to the control medium. In the presence of only one of biotin or ascorbic acid in the nutrient medium, the number of embryos increased compared to the control. KW - Androgenesis KW - vitamin KW - breeding KW - pure line CR - Açıkgöz, N., İlker E., Gökçöl, A. (2004). Biyolojik Araştırmaların Bilgisayarda Değerlendirilmeleri, Ege Üniversitesi Tohum Teknolojisi Uygulama. ve Araştırma Merkezi Yayınları No:2, Ege Üniversitesi Ziraat Fakültesi Ofset Atölyesi, Bornova-İzmir, 202 s (in Turkish). CR - Ahmadi, B., Ebrahimzadeh, H. (2020). In vitro androgenesis: spontaneous vs. artifcial genome doubling and characterization of regenerants. Plant Cell Reports. 39:299–316. Doi: https://doi.org/10.1007/s00299-020-02509-z CR - Al-Khayri, J.M. (2001). Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell. & Dev. Biol.-Plant. 37, 453–456. Doi: https://doi.org/10.1007/s11627-001-0079-x CR - Becker, M. G., Chan, A., Mao X., Girard, I. J., Lee S., Elhiti M., Stasolla, C., Belmonte, M.F. (2014). Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. Journal of Experimental Botany. 65(20) 5903–5918. 10.1093/jxb/eru330. Doi: https://doi.org/10.1093/jxb/eru330 CR - Ceyhan, A.P. and Aktaş, H. (2020). Development of Three Dihaploid Nose and Bell Pepper Lines with Anther Culture Technique. Eurasian J Bio Chem Sci, 3:199-205, Doi: https://doi.org/10.46239/ejbcs.822593 CR - Cheng, Y., Jiao, Y., Miao, R., Tian, R., Liang Y., Qiao, N. (2020). Exploring differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. African J. of Biotechnology. 19(9):661-674. Doi: https://doi.org/10.5897/AJB2020.17194 CR - Çömlekçioğlu N., Ellialtıoğlu, Ş. Ş. (2018). Review on the Research carried out on in vitro Androgenesis of Peppers (Capsicum annuum L.) in Turkey. Review Paper: Research Journal of Biotechnology. 13(6): 75-84. CR - El sharabasy S.F., Bosila, H.A., Abdel-Aal, W.B., Mansour, B.M., Bana A.A. (2019). Effect of Vitamins (pyridoxine and nicotinic acid), Thiamine-Hcl and Myo-Inositol at Different Concentrations on Free Amino Acids and Indoles Content of Embryogenic Callus of in vitro Date Palm (Sakkoty and Bartamuda Cultivar) Materials Research Proceedings 11:244-252. Doi: https://doi.org/10.21741/9781644900178-20 CR - Gill, S.S. Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909–930. Doi: https://doi.org/10.1016/j.plaphy.2010.08.016 CR - Habibi, N., Suthar, P. K. Purohit, S. D. (2009). Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian Journal of Experimental Biology, 47(3): 198–203. CR - Heidari-Zefreh, A.A., Shariatpanahi, M.E., Mousavi, A., Kalatejari, S. (2018). Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma. 256(1):13–24. Doi: https://doi.org/10.1007/s00709-018-1268-3 CR - Hosp J., Tashpulatov, A., Roessner, U., Barsova, E., Katholnigg, H., Steinborn, R., Melikant, B., Lukyanov, S., Heberle-Bors, E., Touraev, E. (2007). Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Molecular Biology. 63:137–149. Doi: https://doi.org/10.1007/s11103-006-9078-y CR - Irıkova, T., Grozeva, S., Popov, P., Rodeva, V., Todorovska, E. (2011). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology and Biotechnological Equipment, 25(4): 2604-2609. Doi: https://doi.org/10.5504/BBEQ.2011.0090 CR - Munoz-Amatriain, M., Svensson, J.T. Castillo, A.M. Cistue, L. Close, T.J. Valles, M.P. (2009). Expression profiles in barley microspore embryogenesis, in: A. Touraev, et al. (Eds.), Advances in Haploid Production in Higher Plants, Springer. pp. 127–134 Doi:https://doi.org/10.1007/978-1-4020-8854-4_9 CR - Murashige, T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant 15: 473-497. Doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CR - Ozsan, T., Onus, A. N. (2017). In vitro Pepper (Capsicum annuum L.) Anther Culture: Can be Affected Via Vitamins B?. Biotechnology Journal International. 20(1):1-13. Doi: https://doi.org/10.9734/BJI/2017/37102 CR - Perez-Pere,z Y., El-Tantawy, A.A., Solis, M.T., Risueno, M.C. Testillano, P.S. (2019) Stress-induced microspore embryogenesis requires endogenous auxin synthesis and polar transport in barley. Front. Plant Sci. 10:1200. Doi: https://doi.org/10.3389/fpls.2019.01200 CR - Pinar, H., Mutlu, N., Yildiz, S., Simsek, D., Shams, M. (2020). Transferring the cultured anther to a medium without activated charcoal overcomes the recalcitrance in pepper genotypes. Canadian Journal of Plant Science. 12 August 2020. Doi: https://doi.org/10.1139/cjps-2020-0050 CR - Rodriguez-Serrano, M., Barany, I., Prem, D., Coronado, M. J., Risueno, M. C. Testilano, P.S. 2012. NO, ROS, and cell death associated with caspase-like activity increase in stress induced microspore embryogenesis of barley. Journal of Experimental Botany. 63(5), 2007–2024. Doi: https://doi.org/org/10.1093/jxb/err400 CR - Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochemistry. 68(14):1904–1921. Doi: https://doi.org/10.1016/j.phytochem.2007.03.038 CR - Sanchez, M.A., Coronado, Y.M., Coronado, A.C.M. (2020). Androgenic studies in the production of haploids and doubled haploids in Capsicum spp. Revista Facultad Nacional de Agronomia Medellin. 73(1):9047-9056. CR - Segui-Simarro J.M., Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiologia Plantarum 134: 1–12. Doi: https://doi.org/10.1111/j.1399-3054.2008.01113.x CR - Shahinul Islam, S.M. Tuteja, N. (2012). Enhancement of androgenesis by abiotic stress and other pretreatments in majör crop species. Plant Science 182:134–144. Doi: https://doi.org/10.1016/j.plantsci.2011.10.001 CR - Shariatpanahi, M.E., Bal, U., Heberle-Bors, E., Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127(4):519–534. Doi: https://doi.org/10.1111/j.1399-3054.2006.00675.x CR - Touraev, A., Vicente, O., Heberle-Bors E. 1997. Initiation of microspore embryogenesis by stress. Trends Plant Sci. 2(8):297–302. Doi: https://doi.org/10.1016/S1360-1385(97)89951-7 CR - Varnier A.L., Jacquard C., Clement C. (2009) Programmed cell death and microspore embryogenesis. In: Touraev A., Forster B.P., Jain S.M. (eds) Advances in Haploid Production in higher plants. Springer, Dordrecht. 147–154. Doi: https://doi.org/10.1007/978-1-4020-8854-4_11 CR - Zeng, A., Yan, J., Song, L., Gao, B., Li, J. (2015). Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). The Journal of Horticultural Science and Biotechnology, 90(6): 607-612, Doi: https://doi.org/10.1080/14620316.2015.11668722 CR - Zur, I., Dubas, E., Golemiec, E., Szechynska-Hebda, M., Golebiowska, G., Wedzony, M. (2009). Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Rep 28:1279–1287. Doi: https://doi.org/10.1007/s00299-009-0730-2 UR - https://doi.org/10.31015/jaefs.2021.2.8 L1 - https://dergipark.org.tr/en/download/article-file/1612858 ER -