TY - JOUR T1 - MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ TT - A MULTI-DIMENSIONAL APPROACH IN MATHEMATICS TEACHER EDUCATION PROGRAMS: "COMPUTATIONS IN FREE AND FINITELY GENERATED LIE ALGEBRAS" EXAMPLE AU - Topak, Ebubekir AU - Aydın, Ela AU - Sönmez, Orhan AU - Temizyürek, Ahmet PY - 2014 DA - March DO - 10.17152/gefd.98884 JF - Gazi Eğitim Fakültesi Dergisi JO - GUJGEF PB - Gazi University WT - DergiPark SN - 1301-9058 SP - 91 EP - 103 VL - 34 IS - 1 LA - tr KW - Matematik Eğitimi KW - Lie Cebirleri KW - Alan Bilgisi. N2 - Let be a finitely generated Lie algebra and be an arbitrary subalgebra of . The maximal linearly independent set of the algebra modulo the subalgebra is called the modulo basis of . In this article we apply computer techniques to compute the modulo basis of using an algorithm given by Aydın in her PhD thesis. CR - Andary, P. (1997). Finely homogeneous computations in free Lie algebras. Discrete Math. Theor. Comput. Sci, 1(1), 101–114. CR - Aydın, E. (1997). Subalgbras of Lie Algebras of Finite Codimension, PhD Thesis, Çukurova University. CR - Berry, J. (1997). Improving discrete mathematics and algorithms curricula with LINK. ITICSE’ 97 2nd Conference on Integrating Technology into Computer Science Education, 14-20. ACM: New York. CR - Bourbaki N. (1975). Lie groups and lie algebras, Part II., Addison-Wesley. CR - Cohen, A. M., & de Graaf, W. A. (1996). Lie algebraic computation. Comput. Phys. Comm. 97(1-2), 53–62. CR - Gerdt, V. P., & Kornyak, V. V. (1996). Construction of finitely presented Lie algebras and superalgebras. J. Symbolic Comput, 21(3), 337–349. de Graaf, W. A. (2000). Lie Algebras: Theory and Algorithms, North Holland. CR - Goldhaber, D., & Anthony, E. (2003). Indicators of Teacher Quality. Retrieved from ERIC database. (ED478408). CR - Hill C., H., Rowon, B., & Ball D., L. (2005). The effects of teachers mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406. CR - Kryazhovskikh, G. V. (1983). Generating and defining relations of subalgebras of Lie algebras. Sibirsk. Mat. Zh. 24(6), 80–86. CR - Reutenauer, C. (1983). Free lie algebras, Oxford University Press. CR - Shirshov, A. I. (1953). Subalgebras of free Lie algebras. Mat. Sbornik N. S., 33(75), 441–452. CR - Shirshov, A. I. (1958). On free lie rings. Mat. Sbornik N. S., 45(87), 113–122. CR - Shulman, L., S. (1986). Those who understand knowledge growth in teaching. Educational Researcher, 15(2), 4-14. UR - https://doi.org/10.17152/gefd.98884 L1 - https://dergipark.org.tr/en/download/article-file/76893 ER -