TY - JOUR T1 - Quantum chemical computational studies on 4-(1-Aminoethyl)pyridine TT - 4-(1-Aminoetil)piridin’in Kuantum Kimyasal Hesaplamaları Üzerine Çalışmalar AU - Vural, Hatice PY - 2021 DA - August DO - 10.18185/erzifbed.906280 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yildirim University WT - DergiPark SN - 2149-4584 SP - 751 EP - 760 VL - 14 IS - 2 LA - en AB - The density functional theory (DFT) method combined with B3LYP and B3PW91 hybrid functional were utilized for geometrical optimization, vibrational frequencies and electronic spectral study. The B3LYP and B3PW91 levels of the time dependent-DFT with 6–311+G(d, p) basis set have been used to determine the highest occupied molecular orbital (HOMO) – the lowest unoccupied molecular orbital (LUMO) energies, absorption wavelengths, and electronic properties (total energy and energy gap) of 4-(1-aminoethyl)pyridine. Global reactivity descriptors like ionization potential, chemical hardness and electron affinity, etc. have been estimated using the B3LYP/6–311+G (d, p) and B3PW91/6–311+G (d, p) methods. The effect of the solvent has been simulated using the integral equation formalism-polarized continuum model (IEF-PCM). KW - 4-(1-aminoethyl)pyridine KW - DFT KW - Solvent effect KW - Energy N2 - Geometrik optimizasyonu, titreşim frekansları ve elektronik spektral çalışma için yoğunluk fonksiyonel teorisinin (DFT) B3LYP ve B3PW91 hibrit fonksiyonelleri kullanıldı. 4-(1-aminoetil) piridin’in en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbitallerin (LUMO) enerjileri, absorbsiyon dalga boylarının ve elektronik özelliklerinin (toplam enerji, enerji aralığı vb.) hesaplanmasında zamana bağlı-DFT ile B3LYP ve B3PW91 ve 6–311+G(d, p) baz seti kullanıldı. İyonizasyon potansiyeli, kimyasal sertlik ve elektron afinitesi gibi global reaktiflik tanımlayıcıları B3LYP/6–311+G (d, p) ve B3PW91/6–311+G (d, p) yöntemleri kullanılarak tahmin edilmiştir. Çözücü etkisi zamana bağlı yoğunluk fonksiyonel teorisine sürekli polarizasyon modeli (IEF-PCM) uygulanarak hesaplandı. CR - Bhatt A. H., Parekh M. H., Parikh K. A. And Parikh A .R. (2001). Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian Journal of. Chemistry., 40(6), 57-61. CR - Dennington R. (2009). GaussView Version 5, Roy, Todd Keith and John Millam, Semichem Inc., Shawnee Mission K.S. CR - Doshi R., Kagathara P. and Parekh H. (1999). Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Ind. J. Chem., 38, 348–352. CR - Dubey P. K., Chowdary K. S., Ramesh B. and Prasada Reddy P. V. V. (2010). Na2S2O4: A Versatile Reagent for the One-Pot Synthesis of 2-Aryl-1H-imidazo[4,5-c]pyridines from 4-Amino-3-nitropyridine and Aldehydes via Reductive Cyclization. Synthetic Communications, 40, 697-708. https://doi.org/10.1080/00397910903011345 CR - Dursun Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013 CR - Frisch M.J. et al., 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT. CR - Gorelsky S. I., 2010. SWizard Program Revision 4.5 University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/ (2010). CR - Hishmat O. H., Galil F. M. A. and Farrag D. S. (1990). Synthesis and antimicrobial activity of new benzofuranylpyridine derivatives. Pharmazie, 45, 793–795. CR - Huang R., Wallqvist A. and Covell D. G. (2005). Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Biochem. Pharmacol., 69(7), 1009-1039. https://doi.org/10.1016/j.bcp.2005.01.001 CR - Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Hökelek T. (2017). Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine. Journal of Molecular Structure,1130, 80-88, https://doi.org/10.1016/j.molstruc.2016.09.089 CR - Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013 CR - Keogh M., Sedehizadeh S. and Maddison P. C. (2011). Treatment for Lambert‐Eaton myasthenic syndrom. Database of Systematic Reviews, 2, 1-21. https://doi.org/10.1002/14651858.CD003279.pub3 CR - Lee C., Yang W. and Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785 CR - Middleton R. W. and Wimberley D. G. (1980). Synthesis of 2‐amino‐3‐benzoylphenylacetic acid. J. Heterocycl. Chem. 17(8), 1663-1664. CR - Patrick G. L. and Kinsmar O. S. (1996). Synthesis and antifungal activity of novel aza-d--homosteroids, hydroisoquinolines, pyridines and dihydropyridines. J. Med. Chem., 31, 615–624. https://doi.org/10.1016/0223-5234(96)89557-2 CR - Perdew J. P., Burke K. And Wang Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533 CR - Pizarro A. M. and Sadler P. J. (2009). Unusual DNA binding modes for metal anticancer complexes. Biochimie, 91(10), 1198-211. https://doi.org/10.1016/j.biochi.2009.03.017 CR - Sankpal U. T., Pius H., Khan M., Shukoor M. I., Maliakal P., Lee C .M., Abdelrahim M., Connelly S. F. and Basha R. (2012). Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumor Biol., 33 (5), 1265–1274. https://doi.org/10.1007/s13277-012-0413-4 CR - Sedehizadeh S., Keogh M. and Maddison P. (2012). The Use of Aminopyridines in Neurological Disorders. Clinical Neuropharmacol, 35, 191-200. doi: 10.1097/WNF.0b013e31825a68c5 CR - Smith R. C. F., Emmen H. H., Bertelsmann F. W., Kulig B. M., van Loenen A. C. and Polman C. H. (1994). The effects of 4-aminopyridine on cognitive function in patients with multiple sclerosis: A pilot study. Neurology, 44(9), 1701- 1705. https://doi.org/10.1212/WNL.44.9.1701 CR - Strupp M., Teufel J., Zwergal A., Schniepp R., Khodakhah K. and Feil K. (2017). Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract.,7(1), 65-76. https://doi.org/10.1212/CPJ.0000000000000321 CR - Szakacs G., Paterson J. K., Ludwig J. A., Booth-Genthe C. and Gottesman M. M. (2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 5, 219–234. https://doi.org/10.1038/nrd1984 CR - Topaçlı A. and Bayarı S. (1999).Urey-Bradley force field of 4-ethylpyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,55(7–8),1389-1394. https://doi.org/10.1016/S1386-1425(98)00302-3 CR - Vural H., Kara M., İdil Ö. (2016). Experimental and computational study of the structure and spectroscopic properties of 1′,3′-Dihydrospiro[cyclohexane-1,2′-[2H]imidazo[4,5-b]pyridine]. Journal of Molecular Structure,1125,662-670, https://doi.org/10.1016/j.molstruc.2016.07.065 CR - Vural H., Ozdogan T. and Orbay M (2019). DFT investigation of the electronic structure and nonlinear optic properties (NLO) of 3-amino-4-(Boc-amino)pyridine. Indian J Phys., 93, 1113–1122. https://doi.org/10.1007/s12648-019-01391-0 UR - https://doi.org/10.18185/erzifbed.906280 L1 - https://dergipark.org.tr/en/download/article-file/1672690 ER -