TY - JOUR T1 - Optimum Three-Element Tuned Mass Damper for Damped Main Structures under Ground Acceleration TT - Yer İvmesi Altındaki Sönümlü Ana Yapılar için Optimum Üç Elemanlı Ayarlı Kütle Sönümleyici AU - Araz, Onur PY - 2021 DA - September Y2 - 2021 DO - 10.31202/ecjse.913901 JF - El-Cezeri JO - El-Cezeri Journal of Science and Engineering PB - Tayfun UYGUNOĞLU WT - DergiPark SN - 2148-3736 SP - 1264 EP - 1271 VL - 8 IS - 3 LA - en AB - Passive control devices have been used for a long time to reduce unwanted vibrations. The most commonly used of these devices are tuned mass dampers. The optimum parameters of the three-element tuned mass damper for damped main structures due to ground acceleration are investigated in this paper. Unlike the traditional tuned mass damper, the three-element tuned mass damper contains two spring elements and one of them is connected in series with the damping element. The optimum parameters are obtained by simulated annealing algorithm. Numerical results show that the three-element tuned mass damper is very effective in reducing dynamic vibrations of the damped structures. KW - dynamic response KW - ground acceleration KW - vibration control KW - tuned mass damper N2 - Pasif kontrol cihazları istenmeyen titreşimlerin azaltılması amacıyla uzun zamandır kullanılmaktadır. Bu cihazlardan en yaygın olarak kullanılanı ise ayarlı kütle sönümleyicilerdir. Bu çalışmada, yer ivmesi etkisindeki sönümlü ana yapılar için üç elemanlı ayarlı kütle sönümleyicilerin optimum parametreleri araştırılmıştır. Geleneksel ayarlı kütle sönümleyicinin aksine, üç elemanlı ayarlanmış kütle sönümleyicide iki rijitlik elemanı bulunur ve bunlardan biri sönüm elemanına seri olarak bağlıdır. Optimum parametreler benzetilmiş tavlama algoritması kullanılarak elde edilmiştir. Sayısal sonuçlar, üç elemanlı ayarlanmış kütle sönümleyici’nin sönümlü ana yapılardaki dinamik titreşimlerin azaltılmasında etkili olduğunu göstermektedir. CR - [1]. Den Hartog J.P. 1956. Mechanical Vibrations, 4th ed., New York: McGraw-Hill. CR - [2]. Fujino Y., Abe M., Design formulas for tuned mass dampers based on a perturbation technique. Earthq. Eng. Struct. Dyn., 1993, 22, 833-854. CR - [3]. Tsai H.C., The effect of tuned-mass dampers on the seismic response of base-isolated structures. Int. J. Solids Struct., 1995, 32, 1195-1210. CR - [4]. Jangid R.S., Optimum multiple tuned mass dampers for base-excited undamped system. Earthq. Eng. Struct. Dyn., 1999, 28, 1041-1049. CR - [5]. Bakre S.V., Jangid R.S., Optimum multiple tuned mass dampers for base-excited damped main system, 2004, Int. J. Struct. Stab. Dyn., 4, 527-542. CR - [6]. Marano G.C., Greco R., Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation, 2011, J. Vib. Control, 17, 679-688. CR - [7]. Yazdi H.A., Saberi H., Hatemi F., Designing optimal tuned mass dampers using improved harmony search algorithm, Adv. Struct. Eng., 2016, 19, 1620-1636. CR - [8]. Dell’Elce L., Gourc E., Kerschen G., A robust equal-peak method for uncertain mechanical systems. J. Sound Vib., 2018, 414, 97-109. CR - [9]. Araz O., Kahya V., Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation. Journal of Structural Engineering & Applied Mechanics, 2018, 1(3), 117–27. CR - [10]. Kahya V., Araz O., A sequential approach based design of multiple tuned mass dampers under harmonic excitation. Sigma J. Eng. & Nat. Sci., 2019, 37(1), 225-239. CR - [11]. Araz O., Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation. Arch. Appl. Mech., 2020, 90, 523–532. CR - [12]. Huang H., Chang W.S., Re-tuning an off-tuned tuned mass damper by adjusting temperature of shape memory alloy: Exposed to wind action, Structures, 2020, 25, 180-189. CR - [13]. Yamaguchi H., Harnpornchai N., Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthq. Eng. Struct. Dyn., 1993, 22, 51-62. CR - [14]. Abe M., Fujino Y., Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq. Eng. Struct. Dyn., 1994, 23, 813-835. CR - [15]. Abe M., Igusa T. Tuned mass dampers for structures with closely spaced natural frequencies. Earthq. Eng. Struct. Dyn., 1995, 24, 247-261. CR - [16]. Asami T., Nishihara O., Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. J. Vib. Acoust., 1999, 121, 334-342. CR - [17]. Asami T., Nishihara O., H2 optimization of the three-element type dynamic vibration absorbers. J. Vib. Acoust., 2002, 124, 583-592. CR - [18]. Anh N.D., Nguyen N.X., Hoa L.T., Design of three-element dynamic vibration absorber for damped linear structures. J. Sound Vib., 2013, 332, 4482-4495. CR - [19]. Javidialesaadi A., Wierschem N.E., Three-element vibration absorber–inerter for passive control of single-degree-of-freedom structures. J. Vib. Acoust., 2018, 140, 1-11. CR - [20]. Nishihara O., Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust., 2019, 141, 1-7. CR - [21]. Yang Y., Gao H., Ma W., Liu Q., Design of a turning cutting tool with large length–diameter ratio based on three-element type vibration absorber. Proc. IMechE Part B: J. Engineering Manufacture, 2020, 234, 1-12. UR - https://doi.org/10.31202/ecjse.913901 L1 - https://dergipark.org.tr/en/download/article-file/1700541 ER -