@article{article_917838, title={On the Solutions of a Fourth Order Difference Equation}, journal={Universal Journal of Mathematics and Applications}, volume={4}, pages={76–81}, year={2021}, DOI={10.32323/ujma.917838}, author={Abo-zeıd, R}, keywords={difference equation, invariant set, forbidden set, convergence}, abstract={<div style="text-align:justify;"> <span style="font-size:14px;">In this paper, we solve and study the global behavior of the well defined solutions of the difference equation $$x_{n+1}=\frac{x_{n}x_{n-3 }{Ax_{n-2}+Bx_{n-3 }, \quad n=0,1,...,$$ where $A, B>0$ and the initial values $x_{-i}$, $i\in\{0,1,2,3\}$ are real numbers. </span> </div>}, number={2}, publisher={Emrah Evren KARA}