TY - JOUR T1 - Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı TT - The Biosynthesis of Silver Nanoparticles and their Use as a Biosensor Material AU - Atar, Havva AU - Çölgeçen, Hatice PY - 2021 DA - December Y2 - 2021 DO - 10.31594/commagene.941022 JF - Commagene Journal of Biology JO - Comm. J. Biol. PB - ABADER (Adıyaman Bilimsel Araştırmalar Derneği) WT - DergiPark SN - 2602-456X SP - 214 EP - 221 VL - 5 IS - 2 LA - tr AB - Nanopartiküllerin kullanılabileceği bilim alanlarını arttırmak amacıyla son zamanlarda çeşitli sentezleme metotları geliştirilmeye çalışılmaktadır. Bu metotlardan biri nanopartiküllerin bitkiler aracılığıyla sentezlenmesidir. Günümüzde biyosentez yönteminin kullanılması, fiziksel ve kimyasal yöntemler gibi geleneksel sentez yöntemlerinin sınırlamalarını ortadan kaldırmış, alternatif bir sentez yolu olarak geliştirilmiştir. Bitkisel nanofabrikalar olarak adlandırılan yeşil sentez ile bitkilerde bulunan primer ve sekonder metabolitler nanopartiküllerin indirgenmesi ve kapatıcılığını mümkün kılmaktadır. Bitkilerde bulunan alkaloidler, fenolikler, terpenoidler, ketonlar, polisakkaritler, proteinler, vitaminler, amino asitlerin fonksiyonel grupları iyon halindeki gümüş metalleri ile tepkimeye girerek “+” değerlikli metalleri “0” değerlikli nanometal yapılara indirgemektedir. Aynı zamanda sekonder metabolitlerin fonksiyonel grupları “0” değerlikli gümüş nanopartiküller ile bağlar oluşturarak gümüş nanopartiküllerin yüzeyini kaplar, böylece gümüş nanopartiküllerinin stabilizasyonu sağlanmış olur. Biyolojik yöntemler ile sentez hızlıdır, yüksek verim sağlar ve gümüş nanopartikülü üretimi maliyeti düşer. Aynı zamanda, biyosentez yoluyla nanopartikül üretimi canlı içinde gerçekleştiğinden çevre dostu bir tekniktir. Son teknoloji ile gümüş nanopartiküller, biyosensör ve fotogörüntüleme alanlarında öne çıkmıştır. Gümüş nanopartiküller ile bazı belirteçlerin spesifik olarak tespiti çeşitli çalışmalarla kanıtlanmıştır. Bu derlemede gümüş nanopartiküllerinin kullanım alanları, biyosentezi, stabilizasyonu, karakterizasyonu, antibakteriyel mekanizması ve biyosensör olarak kullanımına değinilecektir. KW - Yeşil sentez KW - biyonanoteknoloji KW - karakterizasyon KW - sekonder metabolit KW - antibakteriyel aktivite N2 - Various synthesis methods are being developed in order to increase the number of scientific fields where nanoparticles can be used. Recently, the biosynthesis methods have eliminated the limitations of the traditional synthesis methods such as physical and chemical ones. They have been also developed as an alternative synthesis method. With green synthesis called herbal nanofactories, primary and secondary metabolites in plants enable the reduction and capping of nanoparticles. The functional groups of alkaloids, phenolics, terpenoids, ketones, polysaccharides, proteins, vitamins, and amino acids in plants react with silver metals in ionic form and reduce “+” valued metals to “0” valued nanostructures. At the same time, functional groups of secondary metabolites form bonds with “0” valued silver nanometals and cover the surface of silver nanometals; thus, stabilization is achieved. Synthesis by biological methods provides high efficiency and rapid synthesis and the production cost of silver nanoparticle decreases. Moreover, biosynthesis is an environment-friendly technique as it takes place inside a living being. With the latest technology, silver nanoparticles stand out in the fields of biosensor and photoimaging. In this review, in which areas silver nanoparticles are used and their biosynthesis, stabilization, characterization, antibacterial mechanism, and use as a biosensor will be discussed. CR - Abbasi, B.H., Anjum, S., & Hano, C. (2017). Differential effects of in vitro cultures of Linum usitatissimum L. (Flax) on biosynthesis, stability, antibacterial and antileishmanial activities of zinc oxide nanoparticles: a mechanistic approach. Royal Society of Chemistry Advances, 7, 15931-15943. https://doi.org/10.1039/C7RA02070H CR - Abdalla, S.S.I., Katas, H., Chan, J.Y., Ganasan, P., Azmi, F., & Busra, M.F. (2020). Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Advances, 10, 4969-4983. https://doi.org/10.1039/C9RA08680C CR - Ahmed, S.A., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7 (1), 17-28. https://doi.org/10.1016/j.jare.2015.02.007 CR - Alqadi, M.K., Abo Noqtah, O.A., Alzoubi, F.Y., Alzouby, J., & Aljarrah, K. (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32, 107-111. https://doi.org/10.2478/s13536-013-0166-9 CR - Anjum, S., & Abbasi, B.H. (2016). Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.. International Journal of Nanomedicine, 11, 715-728. https://doi.org/10.2147/IJN.S102359 CR - Aref, M.S., & Salem, S.S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27, 101689. https://doi.org/10.1016/j.bcab.2020.101689 CR - Bao, D., Oh, Z.G., & Chen, Z. (2016). Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis. Frontiers in Plant Science, 7, 32. https://doi.org/10.3389/fpls.2016.00032 CR - Baudot, C., Tan, C.M., & Kong, J.C. (2010). FTIR spectroscopy as a tool for nano-material characterization. Infrared Physics and Technology, 53, 434-438. https://doi.org/10.1016/j.infrared.2010.09.002 CR - Calderón-Jiménez, B., Johnson, M.E., Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R., & Vega Baudrit, J.R. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry, 5(6). https://doi.org/10.3389/fchem.2017.00006 CR - Chen, L., Xie, H., & Li, J. (2012). Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. Journal of Solid State Electrochemistry, 16, 3323-3329. https://doi.org/10.1007/s10008-012-1773-9 CR - Chen, S., Quan, Y., Yu, Y.L., & Wang, J.H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science and Engineering, 3, 313-321. https://doi.org/10.1021/acsbiomaterials.6b00644 CR - Cheng, G.F., Huang, C.H., Zhao, J., Tan, X.L., Hep, G., & Fang, Y.Z. (2009). A Novel Electrochemical Biosensor for Deoxyribonucleic Acid Detection Based on Magnetite Nanoparticles. Chinese Journal of Analytical Chemistry, 37(2), 169-173. https://doi.org/10.1016/S1872-2040(08)60083-3 CR - Choi, O., Yu, C.P., Esteban Fernández, G., & Hu, Z. (2010). Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 44, 6095-6103. https://doi.org/10.1016/j.watres.2010.06.069 CR - Fernando, I., & Zhou, Y. (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305. https://doi.org/10.1016/j.chemosphere.2018.10.122 CR - Gholamreza, A., Varshosaz, J., & Shahbazi, N. (2014). Synthesis of silver nanoparticle using Portulaca oleracea L. extracts. Nanomedicine Journal, 1(2), 94-99. CR - Gonzalez, D.A.C, Leo, B.F., Ruenraroengsak, P., Chen, S., Goode, A.E., Theodorou, İ. G., ………… & Porter, A.E. (2017). Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 7, 42871. https://doi.org/10.1038/srep42871 CR - Gorham, J.M., MacCuspie, R.I., Klein, K.L., Fairbrother, D.H., & Holbrook, D. (2012). UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. Journal of Nanoparticle Research, 14. https://doi.org/10.1007/s11051-012-1139-3 CR - Gudikandula, K., & Maringanti, S.C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9). https://doi.org/10.1080/17458080.2016.1139196 CR - Hegazy, H.G., Rabie, G.H., Shabaan, L.D., & Raie, D.S. (2014). Extracellular Synthesis of Silver Nanoparticles by Callus of Medicago sativa. Life Science Journal, 11(10), 1211-1214. CR - Hegazy, H.G., Shabaan, L.D., Rabie, G.H., & Raie, D.S. (2015). Biosynthesis of Silver Nanoparticles Using Cell Free Callus Exudates of Medicago sativa L. Pakistan Journal of Botany, 47(5), 1825-1829. CR - Howe, P.D., & Dobson, S. (2002). Silver and Silver Compounds: Environmental Aspects, World Health Organization & International Programme on Chemical Safety, Geneva. CR - Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406. CR - Javed, R., Zia, M., Naz, S, Aisida, S.O., Ain, N., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18, 172. https://doi.org/10.1186/s12951-020-00704-4 CR - Khatami, M., Nejad, M.S., Salari, S., & Almani, P.G.N. (2015). Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnology, 10, 4, 237-243. https://doi.org/10.1049/iet-nbt.2015.0078 CR - Kim, J.Y., & Lee, J.S. 2012. Multiplexed DNA Detection with DNA-Functionalized Silver and Silver/Gold Nanoparticle Superstructure Probes. Bulletin of the Korean Chemical Society, 33(1), 221. http://dx.doi.org/10.5012/bkcs.2012.33.1.221 CR - Kumar, K.S., & Kathireswari, P. (2016). Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. International Journal of Current Microbiology and Applied Sciences, 5(3), 926-937. http://dx.doi.org/10.20546/ijcmas.2016.503.107 CR - Kvitek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., & Zbořil, R. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C, 112(15), 5825-5834. https://doi.org/10.1021/jp711616v CR - Liu, X., Knauer, M., Ivleva, N.P., Niessner, R., & Haisch, C. (2010). Synthesis of Core−Shell Surface-Enhanced Raman Tags for Bioimaging. Analytical Chemistry, 82(1), 441-446. https://doi.org/10.1021/ac902573p CR - Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., & Boujday, S. (2019). Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors, 9(2), 78. https://doi.org/10.3390/bios9020078 CR - Lukman, A.I., Gong, B., Marjo, C.E., Roessner, U., & Harris, U.T. (2011). Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science, 353, 433-444. https://doi.org/10.1016/j.jcis.2010.09.088 CR - Mandeh, M., Omidi, M., & Rahaie, M. (2012). In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.). Tissue Culture, Biological Trace Element Research, 150, 376-380. https://doi.org/10.1007/s12011-012-9480-z CR - Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G.A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271-278. https://doi.org/10.1016/j.molliq.2016.06.003 CR - Mude, N., Ingle, A., Gade, A., & Rai, M. (2009). Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya – A First Report. Journal of Plant Biochemistry and Biotechnology, 18(1), 83-86. https://doi.org/10.1007/BF03263300 CR - Mukherjee, S., Chowdhury D., Kotcherlakota R., Patra S., Vinothkumar B., Bhadra M.P., …… & Patra, C.R. (2014). Potential theranostics application of bio-synthesised silver nanoparticles (4-in-1 system). Theranostics, 4, 316-335. https://doi.org/10.7150/thno.7819 CR - Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N.M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.. Colloids and Surfaces B: Biointerfaces, 79, 488-493. https://doi.org/10.1016/j.colsurfb.2010.05.018 CR - Naja, G., Bouvrette, P., Hrapovic, S., & Luong, J.H.T. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst, 132(7), 679-86. https://doi.org/10.1039/B701160A CR - Netala, V.R., Kotakadi, V.S., Nagam, V., Bobbu, P., Ghosh, S.B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807. https://doi.org/10.1007/s13204-014-0374-6 CR - Oliveira, P. F. M., Michalchuk, A. A. L., Marquardt, J., Feiler, T., Prinz, C., Torresi, R. M., & Emmerling, F. (2020). Investigating the Role of Reducing Agents on Mechanosynthesis of Au Nanoparticles. CrystEngComm, 22, 6261-6267. https://doi.org/10.1039/D0CE00826E CR - Pal, S., Nisi, R., Stoppa, M., & Licciulli, A. (2017). Silver-Functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2, 3632-3639. https://doi.org/10.1021/acsomega.7b00442 CR - Parvathiraja, C., Shailajha, S., Shanavas, S., & Gurung J. (2021). Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Applied Nanoscience, 11, 477-491. https://doi.org/10.1007/s13204-020-01585-7 CR - Patra, J.K., Kwon, Y., & Baek, K.H. (2016). Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities. Advanced Powder Technology, 27, 2204-2213. https://doi.org/10.1016/j.apt.2016.08.005 CR - Ramanathan, S., Gopinath, S.C.B., Anbu, P., Lakshmipriya, T., Kasim, F.H., & Lee, C.G. (2018). Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. Journal of Molecular Structure, 1160, 80-91. https://doi.org/10.1016/j.molstruc.2018.01.056 CR - Rasheed, T., Bilal, M., Iqbal, H.M.N., & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 158, 408-15. https://doi.org/10.1016/j.colsurfb.2017.07.020 CR - Rashid, S., Azeem, M., Khan, S.A., Shah, M.M., & Ahmad, R. (2019). Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids and Surfaces B: Biointerfaces, 179, 317-25. https://doi.org/10.1016/j.colsurfb.2019.04.016 CR - Rashmi, V., Prabhushankar, H.B., & Sanjay, K.R. (2021). Centella asiatica L. callus mediated biosynthesis of silver nanoparticles, optimization using central composite design, and study on their antioxidant activity. Plant Cell Tissue Organ Culture, 146, 515-529. https://doi.org/10.1007/s11240-021-02086-3 CR - Sallah, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N., & Fauzi, B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566 CR - Satyavani, K., Ramanathan, Y., & Gurudeeban, S. (2011). Green Synthesis of Silver Nanoparticles by Using Stem Derived Callus Extract of Bitter Apple (Citrullus Colocynthis). Digest Journal of Nanomaterials and Biostructures, 6(3), 1019-1024. https://doi.org/10.1007/1019_Satyavani.pdf CR - Sharifi-Rad, M., Pohl, P., Epifano, F., & Álvarez-Suarez, J.M. (2020). Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities, Nanomaterials, 10, 2383. https://doi.org/10.3390/nano10122383 CR - Siddiqi, K.S., & Husen, A. (2017). Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. Journal of Trace Elements in Medicine and Biology, 40, 10-23. https://doi.org/10.1016/j.jtemb.2016.11.012 CR - Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34, 7. https://doi.org/10.1016/j.tibtech.2016.02.006 CR - Song, J., Wu, F., Wan, Y., & Ma, L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control, 50, 356-361. https://doi.org/10.1016/j.foodcont.2014.08.049 CR - Sotiriou, G.A., & Pratsinis, S.E. (2011). Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 1(1), 3-10. https://doi.org/10.1016/j.coche.2011.07.001 CR - Szymanski, M.S., & Porter, R.A. (2013). Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. Journal of Immunological Methods, 387(1-2), 262-269. https://doi.org/10.1016/j.jim.2012.11.003 CR - Tan, P., Li, H.S., Wang, J., & Gopinath, S.C.B. (2020). Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnology and Applied Biochemistry, https://doi.org/10.1002/bab.2045 CR - Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., ……. & Yin, J.J. (2018). Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Interfaces, 10, 8443-8450. https://doi.org/10.1021/acsami.7b17274 CR - Toh, S., Jurkschat, K., & Compton, R.G. (2015). The Influence of the Capping Agent on the Oxidation of Silver Nanoparticles: Nano-impacts versus Stripping Voltammetry. Chemistry-A European Journal, 21, 2998-3004. https://doi.org/10.1002/chem.201406278 CR - Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217-223. https://doi.org/10.1007/s13204-012-0121-9 CR - Vennila, K., Chitra, L., Balagurunathan, R., & Palvannan, T. (2018). Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 5-15. https://doi.org/10.1088/2043-6254/aa9f4d CR - Wakshlak, R.B.K., Pedahzur, R., & Avnir, D. (2015). Antibacterial activity of silver-killed bacteria: The “zombies” effect. Scientific Reports, 5, 1-5. https://doi.org/10.1038/srep09555 CR - Xia, Q.H., Ma, Y.J., & Wang, J.W. (2016). Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials, 6, 160. https://doi.org/10.3390/nano6090160 CR - Xuan, Z., Li, M., Rong, P., Wang, W., Li, Y., & Liu, D. (2016). Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale, 39. https://doi.org/10.1039/C6NR06079J CR - Zhang, H., & Zhang, C. (2014). Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. Journal of Materials and Environmental Science, 5:231-236. CR - Zhao, L., Yu, R.J., Ma, W., Han, H.X., Tian, H., Qian, R.C., & Long, Y.T. (2017). Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics, 7(4), 876-883. https://www.thno.org/v07p0876.htm CR - Zook, J.M., Long, S.E., Cleveland, D., Geronimo, C.L.A., & MacCuspie, R.I. (2011). Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Analytical and Bioanalytical Chemistry, 401, 1993. https://doi.org/10.1007/s00216-011-5266-y UR - https://doi.org/10.31594/commagene.941022 L1 - https://dergipark.org.tr/en/download/article-file/1781847 ER -