TY - JOUR T1 - A Nonlinear $r(x)$-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial Energy AU - Shahrouzi, Mohammad AU - Ferreıra, Jorge PY - 2021 DA - December Y2 - 2021 DO - 10.33434/cams.941324 JF - Communications in Advanced Mathematical Sciences PB - Emrah Evren KARA WT - DergiPark SN - 2651-4001 SP - 208 EP - 216 VL - 4 IS - 4 LA - en AB - In this paper we consider $r(x)-$Kirchhoff type equation with variable-exponent nonlinearity of the form $$ u_{tt}-\Delta u-\big(a+b\int_{\Omega}\frac{1}{r(x)}|\nabla u|^{r(x)}dx\big)\Delta_{r(x)}u+\beta u_{t}=|u|^{p(x)-2}u, $$ associated with initial and Dirichlet boundary conditions. Under appropriate conditions on $r(.)$ and $p(.)$, stability result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and suitable range of variable exponents, solutions blow-up in a finite time. KW - Kirchhoff equation KW - stability result KW - variable exponents KW - blow-up CR - [1] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig , (1883). CR - [2] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204, 729–753 (1996). CR - [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216, 321–342 (1997). CR - [4] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math. 13, 408–420 (2015). CR - [5] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput. 265, 807–818 (2015). CR - [6] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differ. Integral Equ. 8, 607–616 (1995). CR - [7] S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q􀀀Laplacian type with nonlinear dissipation, Colloq. Math. 94, 103–109 (2002). CR - [8] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. Appl. Sci. 20, 151–177 (1997). CR - [9] C. O. Alves, F. J. S. A. Corr ˆ ea, T. F. Ma, Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type, Comput. Math. Appl. 49, 85–93 (2005). CR - [10] A. Yang, Z. Gong, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ. 332, 1–8 (2016). CR - [11] M. Shahrouzi, F. Kargarfard, Blow-up of solutions for a Kirchhoff type equation with variable-exponent nonlinearities, J. App. Anal. 27(1), 97–105 (2021). CR - [12] S. N. Antontsev, J. Ferreira, E. Pis¸kin, S. M. S. Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl. 61, 103341, (2021). CR - [13] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl. 11(1), 37–45 (2020). CR - [14] M. Shahrouzi, Blow up of solutions for a r(x)􀀀Laplacian Lam´e equation with variable-exponent nonlinearities and arbitrary initial energy level, Int. J. Nonlinear Anal. Appl. 13(1), 441–450 (2022). CR - [15] M. Shahrouzi, General decay and blow up of solutions for a class of inverse problem with elasticity term and variableexponent nonlinearities, Math. Meth. Appl. Sci. 2021. DOI: https://doi.org/10.1002/mma.7891. CR - [16] G. Dai, R. Hao, Existence of solutionsfor a p(x)􀀀Kirchhoff-type equation, J. Math. Anal. Appl. 359, 275–284 (2009). [17] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovˇe, Existence and multiplicity results for a new p(x)􀀀Kirchhoff problem, Nonlinear Analysis 190, 111598 (2020). CR - [18] G. Dai, R. Ma, Solutions for a p(x)􀀀Kirchhoff type equation with Neumann boundary data, Nonlinear Analysis: Real World Applications 12 , 2666–2680 (2011). CR - [19] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)􀀀Laplace operator, Rocky Mount. J. Math. 48(4), 1145–1158 (2018). CR - [20] E. J. Hurtado, O. H. Miyagaki, R. D. S. Rodrigues, Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent, Milan J. Math. 85, 71–102 (2017). CR - [21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291(2), 326–342 (2018). CR - [22] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comp. Math. Appl. 75, 3946–3956 (2018). CR - [23] M. Shahrouzi, Global nonexistence of solutions for a class of viscoelastic Lam´e system, Indian J. Pure Appl. Math. 51(4), 1383–1397 (2020). CR - [24] L. Diening, P. Hasto, et al. Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, (2011). CR - [25] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143, 267–293 (2000). CR - [26] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr. 246, 53–67 (2002). CR - [27] X. Fan, D. Zhao, On the spaces Lp(x) andWm;p(x)(W), J. Math. Anal. Appl. 263, 424–446 (2001). CR - [28] X. Fan, Q. H. Zhang, Existence of solutions for p(x)􀀀Laplacian Dirichlet problem, Nonlinear Anal. 52, 1843–1852 (2003). UR - https://doi.org/10.33434/cams.941324 L1 - https://dergipark.org.tr/en/download/article-file/1783056 ER -