TY - JOUR T1 - ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX AU - Kılınç Yıldırım, Seda AU - Yıldırım, Hüseyin PY - 2021 DA - July Y2 - 2021 DO - 10.33773/jum.945748 JF - Journal of Universal Mathematics JO - JUM PB - Gökhan ÇUVALCIOĞLU WT - DergiPark SN - 2618-5660 SP - 230 EP - 240 VL - 4 IS - 2 LA - en AB - The aim of this paper, is to establish some new inequalities ofHermite-Hadamard type by using (mü 1; mü 2)-strongly convex function via whosenth derivatives in absolute value at certain powers. Moreover, we also considertheir relevances for other related known results. KW - hermite- hadamard inequality KW - strongly convex functions KW - Riemann-Liouville fractional integrals CR - S. Abbaszadeh, and A. Ebadian (2018). Nonlinear integrals and Hadamard-type inequalities, Soft Computing, 22 (9) (2018), 2843-2849. CR - M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Ineq. Appl. 2009 (2009), Article ID 283147, 13 pp. CR - M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4) (2010) 353-359. CR - M. Alomari, M. Darus and U.S. Kirmaci, Requnements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp. Math. Appl. 59 (2010) 225-232. CR - M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions, Filomat 31(18) (2017) 5783-5790. UR - https://doi.org/10.33773/jum.945748 L1 - https://dergipark.org.tr/en/download/article-file/1798367 ER -