TY - JOUR T1 - Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus TT - Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus AU - Zengin, Gokhan AU - Belmehdi, Omar AU - Bouyahya, Abdelhakim AU - Jekő, József AU - Cziáky, Zoltán AU - Sotkó, Gyula AU - El Baaboua, Aicha AU - Senhaji, Nadia Skali AU - Abrini, Jamal PY - 2021 DA - September DO - 10.21448/ijsm.947033 JF - International Journal of Secondary Metabolite JO - Int. J. Sec. Metabolite PB - İzzet KARA WT - DergiPark SN - 2148-6905 SP - 195 EP - 213 VL - 8 IS - 3 LA - en AB - The development of multi-drug-resistant bacteria pushed the scientific community to look for new alternatives to solve the problem. Propolis is a beehive substance and one of the richest natural products in bioactive compounds with antibacterial activity. This study was aimed to investigate the possible synergistic interaction between propolis and antibacterial drugs, such as essential oils (EOs) and antibiotics, in order to find increased activity with decreased concentrations. Two ethanol extracts of propolis were used for the test, which were collected from the north of Morocco. The chemical composition was determined by UHPLC-MS. The synergistic effect of propolis extracts with EOs and antibiotics was tested using the checkerboard technique. The chemical analysis showed the presence of more that 100 compounds in propolis extracts, belonging mainly to flavonoids. The combination of propolis with the other antibacterial drugs showed different types of interactions with FIC index values varied from 0.18 to 1, but no antagonist effect was noticed. With FICI<0.5, the synergistic effect was obtained with essential oils as well as with antibiotics. These results indicate that propolis can be a promising source of molecules with medical interest to treat bacterial infection and/or to increase the action of antibiotics. KW - Propolis KW - chemical composition KW - essential oils KW - antibiotics KW - checkboard technique N2 - The development of multi-drug-resistant bacteria pushed the scientific community to look for new alternatives to solve the problem. Propolis is a beehive substance and one of the richest natural products in bioactive compounds with antibacterial activity. This study was aimed to investigate the possible synergistic interaction between propolis and antibacterial drugs, such as essential oils (EOs) and antibiotics, in order to find increased activity with decreased concentrations. Two ethanol extracts of propolis were used for the test, which were collected from the north of Morocco. The chemical composition was determined by UHPLC-MS. The synergistic effect of propolis extracts with EOs and antibiotics was tested using the checkerboard technique. The chemical analysis showed the presence of more that 100 compounds in propolis extracts, belonging mainly to flavonoids. The combination of propolis with the other antibacterial drugs showed different types of interactions with FIC index values varied from 0.18 to 1, but no antagonist effect was noticed. With FICI<0.5, the synergistic effect was obtained with essential oils as well as with antibiotics. These results indicate that propolis can be a promising source of molecules with medical interest to treat bacterial infection and/or to increase the action of antibiotics. CR - Bankova, V., Popova, M., & Trusheva, B. (2014). Propolis volatile compounds: Chemical diversity and biological activity: A review. Chemistry Central Journal, 8(1), 28. https://doi.org/10.1186/1752-153X-8-28 CR - Bantar, C., Vesco, E., Heft, C., Salamone, F., Krayeski, M., Gomez, H., Coassolo, M. A., Fiorillo, A., Franco, D., Arango, C., Duret, F., & Oliva, M. E. (2004). Replacement of broad-spectrum cephalosporins by piperacillin-tazobactam: Impact on sustained high rates of bacterial resistance. Antimicrob. Agents Chemother., 48(2), 392 395. https://doi.org/10.1128/aac.48.2.392-395.2004 CR - Bouhdid, S., Abrini, J., Zhiri, A., Espuny, M. J., & Manresa, A. (2009). Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J. Appl. Microbiol., 106(5), 1558-1568. https://doi.org/10.1111/j.1365-2672.2008.04124.x CR - Bouyahya, A., Abrini, J., Et-Touys, A., Bakri, Y., & Dakka, N. (2017). Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. European Journal of Integrative Medicine, 13, 9-25. CR - Denes, É., & Hidri, N. (2009). Synergie et antagonisme en antibiothérapie. Antibiotiques, 11(2), 106-115. https://doi.org/10.1016/j.antib.2009.02.001 CR - Fernandes Júnior, A., Balestrin, E. C., Betoni, J. E. C., Orsi, R. de O., Cunha, M. de L. R. de S. da, & Montelli, A. C. (2005). Propolis: Anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Memórias Do Instituto Oswaldo Cruz, 100(5), 563-566. https://doi.org/10.1590/S0074-02762005000500018 CR - Ghisalberti, E. L. (1979). Propolis: A Review. Bee World, 60(2), 59 84. https://doi.org/10.1080/0005772X.1979.11097738 CR - Guz, N. R., Stermitz, F. R., Johnson, J. B., Beeson, T. D., Willen, S., Hsiang, J.-F., & Lewis, K. (2001). Flavonolignan and Flavone Inhibitors of a Staphylococcus a ureus Multidrug Resistance Pump: Structure−Activity Relationships. J. Med. Chem., 44(2), 261-268. https://doi.org/10.1021/jm0004190 CR - Hegazi, A. G., Abd El Hady, F. K., & Abd Allah, F. A. M. (2000). Chemical Composition and Antimicrobial Activity of European Propolis. Zeitschrift Für Naturforschung C, 55(1-2), 70-75. https://doi.org/10.1515/znc-2000-1-214 CR - Hirai, I., Okuno, M., Katsuma, R., Arita, N., Tachibana, M., & Yamamoto, Y. (2010). Characterisation of anti-Staphylococcus aureus activity of quercetin: Anti-MRSA activity of quercetin. International J. Food Sci. Technol., 45(6), 1250 1254. https://doi.org/10.1111/j.1365-2621.2010.02267.x CR - Huang, S., Zhang, C.-P., Wang, K., Li, G., & Hu, F.-L. (2014). Recent Advances in the Chemical Composition of Propolis. Molecules, 19(12), 19610 19632. https://doi.org/10.3390/molecules191219610 CR - Krol, W., Scheller, S., Shani, J., Pietsz, G., & Czuba, Z. (1993). Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of staphylococcus aureus. Arzneimittel-Forschung, 43(5), 607-609. https://europepmc.org/article/med/8329008 CR - Kuropatnicki, A. K., Szliszka, E., & Krol, W. (2013). Historical Aspects of Propolis Research in Modern Times. Evid. Based Complement. Alternat. Med, 2013, 1 11. https://doi.org/10.1155/2013/964149 CR - Kwon, M. J., Shin, H. M., Perumalsamy, H., Wang, X., & Ahn, Y.-J. (2020). Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J. Apicult. Res., 59(4), 413 425. https://doi.org/10.1080/00218839.2019.1695715 CR - Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G.-J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 91(3), 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x CR - Lu, L.-C., Chen, Y.-W., & Chou, C.-C. (2005). Antibacterial activity of propolis against Staphylococcus aureus. International J. Food Microbiol., 102(2), 213 220. https://doi.org/10.1016/j.ijfoodmicro.2004.12.017 CR - Mohamadi, N., Sharififar, F., Pournamdari, M., & Ansari, M. (2018). A Review on Biosynthesis, Analytical Techniques, and Pharmacological Activities of Trigonelline as a Plant Alkaloid. J. Dietary Suppl., 15(2), 207 222. https://doi.org/10.1080/19390211.2017.1329244 CR - Orsatti, C. L., Missima, F., Pagliarone, A. C., Bachiega, T. F., Búfalo, M. C., Araújo, J. P., & Sforcin, J. M. (2010). Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice: propolis action on toll like receptors and cytokines. Phytother. Res., 24(8), 1141 1146. https://doi.org/10.1002/ptr.3086 CR - Rivero-Cruz, J. F., Granados-Pineda, J., Pedraza-Chaverri, J., Pérez-Rojas, J. M., Kumar-Passari, A., Diaz-Ruiz, G., & Rivero-Cruz, B. E. (2020). Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants, 9(1), 70. https://doi.org/10.3390/antiox9010070 CR - Salatino, A., Fernandes-Silva, C. C., Righi, A. A., & Salatino, M. L. F. (2011). Propolis research and the chemistry of plant products. Nat. Prod. Rep., 28(5), 925. https://doi.org/10.1039/c0np00072h CR - Sforcin, J. M., Fernandes, A., Lopes, C. A. M., Bankova, V., & Funari, S. R. C. (2000). Seasonal effect on Brazilian propolis antibacterial activity. J. Ethnopharmacol., 73(1), 243-249. https://doi.org/10.1016/S0378-8741(00)00320-2 CR - Šturm, L., & Ulrih, N. P. (2019). Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. EFood, 1(1), 24. https://doi.org/10.2991/efood.k.191029.001 CR - Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Appl. Environmen. Microbiol., 68(4), 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002 CR - Ventola, C.L (2015) The Antibiotic Resistance Crisis: Part 1—Causes and Threats. Pharmacy and Therapeutics, 40, 277-283. CR - Wu, D., Kong, Y., Han, C., Chen, J., Hu, L., Jiang, H., & Shen, X. (2008). D-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicro. Agent., 32(5), 421-426. https://doi.org/10.1016/j.ijantimicag.2008.06.010 CR - Xu, J., Zhou, F., Ji, B.-P., Pei, R.-S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol agains Escherichia coli. Lett. Appl. Microbiol., 47(3), 174 179. https://doi.org/10.1111/j.1472-765X.2008.02407.x CR - Yousif, L., Belmehdi, O., Abdelhakim, B., Skali Senhaji, N., & Abrini, J. (2020). Does the domestication of Origanum compactum (Benth) affect its chemical composition and antibacterial activity? Flavour and Fragrance Journal, 36(2), 264 271. https://doi.org/10.1002/ffj.3641 CR - Zengin, G., Uysal, A., Diuzheva, A., Gunes, E., Jekő, J., Cziáky, Z., Picot-Allain, C. M. N., & Mahomoodally, M. F. (2018). Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal., 160, 374 382. https://doi.org/10.1016/j.jpba.2018.08.020 CR - Zhou, J., Chan, L., & Zhou, S. (2012). Trigonelline: A Plant Alkaloid with Therapeutic Potential for Diabetes and Central Nervous System Disease. Curr. Med. Chem., 19(21), 3523-3531. https://doi.org/10.2174/092986712801323171 UR - https://doi.org/10.21448/ijsm.947033 L1 - https://dergipark.org.tr/en/download/article-file/1803359 ER -