TY - JOUR T1 - Total phenolic content, antiradical, antimicrobial and antibiofilm properties of grape and apple vinegar AU - Kahraman, Hatice Ahu AU - Tutun, Hidayet AU - Kaya, Muhammet Mükerrem AU - Tutun, Soner AU - Usluer, Melike Sultan AU - Rugji, Jerina AU - Yurdakul, Ozen PY - 2021 DA - August Y2 - 2021 DO - 10.31797/vetbio.960155 JF - Journal of Advances in VetBio Science and Techniques JO - J Ad VetBio Sci Tech PB - İlker ÇAMKERTEN WT - DergiPark SN - 2548-1150 SP - 150 EP - 158 VL - 6 IS - 2 LA - en AB - Antimicrobial resistance – the capability of microorganisms to resist antimicrobial agents – has been stated as a major concern for public health. The increase in spread of multi- and pan-resistant bacteria which are not treatable with present antimicrobials has brought the need for the use of alternative products. Vinegar is a natural product- produced from alcoholic fermentation- that has shown strong antimicrobial activity. The aim of this study was to determine the total phenolic content and antiradical activity of the commercial grape and apple vinegar as well as to evaluate their antibiofilm and antimicrobial activities against Staphylococcus aureus and Pseudomonas aeruginosa. Grape vinegar showed higher total acidity and total phenolic content, and lower antiradical activity (DPPH activity) compared to apple vinegar. The populations of S. aureus and P. aeruginosa were significantly reduced by neat grape and apple vinegar samples. The antibacterial activity of grape vinegar was superior to apple vinegar. While AV and GV samples at 50% concentration did not form a visible zone of inhibition against S. aureus, they showed an inhibitory effect against P. aeruginosa (16.24 mm for GV and 16.5 for AV). The vinegar applied at the lowest concentration (25%) did not show any antibacterial effect on either bacterium. Solutions containing 50% to 6.25% vinegar samples prevented almost 100% biofilm formation in both bacteria. However, solutions containing lower amounts of vinegar showed stronger inhibition of biofilm formation by P. aeruginosa. A positive correlation was found between the biofilm reducing ability of vinegar samples and their antibacterial activity in this study. Taken together, commercial grape and apple vinegar significantly reduced the viability of S. aureus and P. aeruginosa, thereby decreasing biofilm formation. KW - Antimicrobial activity KW - Antibiofilm activity KW - Antiradical activity KW - Food pathogens KW - Vinegar CR - Akbaş, M., & Cabaroğlu, T. (2010). Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda, 35(3), 183-188. CR - Aydin, S., & Gökişik, C. D. (2019). Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar. International Journal of Chemistry and Technology, 3(1), 11-16. doi: 0.32571/ijct.471953 CR - Bakir, S., Devecioglu, D., Kayacan, S., Toydemir, G., Karbancioglu-Guler, F., & Capanoglu, E. (2017). Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 243(12), 2083-2094. doi: 10.1007/s00217-017-2908-0 CR - Baldas B, Altuner EM. (2018). The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27,1-10. doi: 10.1501/commuc_0000000187 CR - Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K., & Guzel‐Seydim, Z. B. (2014). Functional properties of vinegar. Journal of food science, 79(5), R757-R764. doi: 10.1111/1750-3841.12434. CR - Čabarkapa I, Čolović R, Đuragić O, Popović S, Kokić B, Milanov D, Pezo L. (2019). Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling. 35, 361-375. doi: 10.1080/08927014.2019.1610169 CR - Camargo, A. C., Woodward, J. J., Call, D. R., & Nero, L. A. (2017). Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian scenario. Foodborne Pathogens and Disease, 14(11), 623-636. doi: 0.1089/fpd.2016.2274. CR - Chang, J. M., & Fang, T. J. (2007). Survival of Escherichia coli O157: H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157: H7. Food Microbiology, 24(7-8), 745-751. doi: 10.1016/j.fm.2007.03.005 CR - Chen, H., Chen, T., Giudici, P., & Chen, F. (2016). Vinegar functions on health: Constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1124-1138. doi: 10.1111/1541-4337.12228 CR - Chou, C. H., Liu, C. W., Yang, D. J., Wu, Y. H. S., & Chen, Y. C. (2015). Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chemistry, 168, 63-69. doi: 10.1016/j.foodchem.2014.07.035 CR - Coelho, E., Genisheva, Z., Oliveira, J. M., Teixeira, J. A., & Domingues, L. (2017). Vinegar production from fruit concentrates: Effect on volatile composition and antioxidant activity. Journal of food science and technology, 54(12), 4112-4122. doi: 10.1007/s13197-017-2783-5 CR - Collins, C. H., Lynes, P. M., & Grange, J. M. (1995). Microbiological Methods, (7th ed.). Butterwort. CR - Deng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481-2508. doi: 10.1080/10408398.2019.1649633 CR - Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575. doi:10.1038/nrmicro.2016.94 Gaber, S. N., Bassyouni, R. H., Masoud, M., & Ahmed, F. A. (2020). Promising anti-microbial effect of apple vinegar as a natural decolonizing agent in healthcare workers. Alexandria Journal of Medicine, 56(1), 73-80. doi: 10.1080/20905068.2020.1769391 CR - Galie S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. Front Microbiol. 9, 898. doi: 10.3389/fmicb.2018.00898 CR - Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G. J. E., Kacaniova, M., Czaczyk, K., Olmez, H., & Simões, M. (2015). Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in microbiology, 6, 841. doi: 10.3389/fmicb.2015.00841 CR - Gómez-García, M., Sol, C., de Nova, P. J., Puyalto, M., Mesas, L., Puente, H., Mencía-Ares, Ó., Miranda, R., Argüello, H., Rubio, P., & Carvajal, A. (2019). Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine health management, 5(1), 1-8. doi: 10.1186/s40813-019-0139-4 CR - Halstead, F. D., Rauf, M., Moiemen, N. S., Bamford, A., Wearn, C. M., Fraise, A. P., Lund P. A., Oppenheim B. A., Webber, M. A. (2015). The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PloS one, 10(9), e0136190. doi: 10.1371/journal.pone.0136190. CR - Janchovska, E., Janchovska, M., Ristovski, B., & Bocevska, M. (2015). Antimicrobial and antioxidative activity of commercial versus traditional apple vinegar. Organized by ICSD, 28-32. CR - Kahraman, H. A., Tutun, H., Keyvan, E., Balkan, B. M. (2021). Investigation of Chemical, Antibacterial and Antiradical Properties of Home-made Apple and Grape Vinegars, Ankara Üniversitesi Veteriner Fakültesi Dergisi, doi:10.33988/auvfd.865309 CR - Lingham, T., Besong, S., Ozbay, G., & Lee, J. L. (2012). Antimicrobial activity of vinegar on bacterial species isolated from retails and local channel catfish (Ictalurus punctatus). J. food Process Technol, S11-001. S11-001 Page, 2, 25-28. doi: 10.4172/2157-7110.S11-001 CR - Loretz, M., Stephan, R., & Zweifel, C. (2011). Antibacterial activity of decontamination treatments for pig carcasses. Food control, 22(8), 1121-1125. doi: 10.1016/j.foodcont.2011.01.013 CR - Loretz, M., Stephan, R., & Zweifel, C. (2011). Antibacterial activity of decontamination treatments for cattle hides and beef carcasses. Food Control, 22(3-4), 347-359. doi: 10.1016/j.foodcont.2010.09.004 CR - Loretz, M., Stephan, R., Zweifel, C. (2010). Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control. 21, 791-804. doi: 10.1016/j.foodcont.2009.11.007 CR - Medina, E., Romero, C., Brenes, M., & De Castro, A. (2007). Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. Journal of food protection, 70(5), 1194-1199. doi: 10.4315/0362-028x-70.5.1194 CR - Mohanty, S., Ramesh, S., & Muralidharan, N. P. (2017). Antimicrobial efficacy of apple cider vinegar against Enterococcus faecalis and Candida albicans: An in vitro study. Journal of Advanced Pharmacy Education & Research| Apr-Jun, 7(2), 137-141. CR - Ölmez, H., & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT-Food Science and Technology, 42(3), 686-693. doi: 10.1016/j.lwt.2008.08.001 CR - Ousaaid, D., Imtara, H., Laaroussi, H., Lyoussi, B., & Elarabi, I. (2021). An Investigation of Moroccan Vinegars: Their Physicochemical Properties and Antioxidant and Antibacterial Activities. Journal of Food Quality, 2021. doi: 10.1155/2021/6618444 CR - Pawar, S. S., & Dasgupta, D. (2018). Quantification of phenolic content from stem-bark and root of Hugonia mystax Linn. using RP-HPLC. Journal of King Saud University-Science, 30(3), 293-300. doi: 10.1016/j.jksus.2016.09.002 CR - Pedroso, J. D. F., Sangalli, J., Brighenti, F. L., Tanaka, M. H., & Koga‐Ito, C. Y. (2018). Control of bacterial biofilms formed on pacifiers by antimicrobial solutions in spray. International journal of paediatric dentistry, 28(6), 578-586. doi: 10.1111/ipd.12413 CR - Pometto, A. L., & Demirci, A. (2015). Biofilms in the Food Environment: Second Edition. Wiley. doi:10.1002/9781118864036 CR - Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522-554. doi: 10.1080/21505594.2017.1313372 CR - Samad, A., Azlan, A., & Ismail, A. (2016). Therapeutic effects of vinegar: a review. Current Opinion in Food Science, 8, 56-61. doi: 10.1016/j.cofs.2016.03.001 CR - Sengun, I. Y., & Karapinar, M. (2004). Effectiveness of lemon juice, vinegar and their mixture in the elimination of Salmonella typhimurium on carrots (Daucus carota L.). International journal of food microbiology, 96(3), 301-305. doi: 10.1016/j.ijfoodmicro.2004.04.010. CR - Sengun, I. Y., Kilic, G., & Ozturk, B. (2019). Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food science and biotechnology, 1-8. doi: 10.1007/s10068-019-00678-6 CR - Sudagidan, M., & Yemenicioğlu, A. (2012). Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples. Journal of food protection, 75(9), 1627-1633. doi: 10.4315/0362-028X.JFP-12-001. CR - Tsang, S. T. J., Gwynne, P. J., Gallagher, M. P., & Simpson, A. H. R. W. (2018). The biofilm eradication activity of acetic acid in the management of periprosthetic joint infection. Bone & joint research, 7(8), 517-523. doi: 10.1302/2046-3758.78.BJR-2018-0045.R1 CR - Turkish Standards Institution -TSE. (2016). Vinegar - product made from liquids of agricultural origin - definitions, requirements, marking (Vol. TS 1880 EN 13188/D1:2016), Ankara. CR - Verzelloni, E., Tagliazucchi, D., & Conte, A. (2007). Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food chemistry, 105(2), 564-571. doi: 10.1016/j.foodchem.2007.04.014 CR - Wu, F. M., Doyle, M. P., Beuchat, L. R., Wells, J. G., Mintz, E. D., & Swaminathan, B. (2000). Fate of Shigella sonnei on parsley and methods of disinfection. Journal of Food Protection, 63(5), 568-572. doi: 10.4315/0362-028x-63.5.568 CR - Xu, Z., Xie, J., Soteyome, T., Peters, B. M., Shirtliff, M. E., Liu, J., & Harro, J. M. (2019). Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current opinion in food science, 26, 57-64. doi: 10.1016/j.cofs.2019.03.006 CR - Yagnik, D., Serafin, V., & Shah, A. J. (2018). Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Scientific reports, 8(1), 1-12. doi: 10.1038/s41598-017-18618-x. CR - Yagnik, D., Ward, M., & Shah, A. J. (2021). Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli. Scientific Reports, 11(1), 1-7. doi: 10.1038/s41598-020-78407-x CR - Zhang, H., He, P., Kang, H., & Li, X. (2018). Antioxidant and antimicrobial effects of edible coating based on chitosan and bamboo vinegar in ready to cook pork chops. Lwt, 93, 470-476. UR - https://doi.org/10.31797/vetbio.960155 L1 - https://dergipark.org.tr/en/download/article-file/1852382 ER -