TY - JOUR T1 - A Hybrid Applied Optimization Algorithm for Training Multi-Layer Neural Networks in Data Classification AU - Örkçü, H. Hasan AU - Doğan, Mustafa AU - Örkçü, Mediha PY - 2015 DA - February JF - Gazi University Journal of Science PB - Gazi University WT - DergiPark SN - 2147-1762 SP - 115 EP - 132 VL - 28 IS - 1 LA - en AB - Backpropagation algorithm is classical technique used in the training of the artificial neural networks. Since this algorithm has many disadvantages, the training of the neural networks has been implemented with various optimization methods. In this paper, a hybrid intelligent model, i.e., hybridGSA, is developed to training artificial neural networks (ANN) and undertaking data classification problems. The hybrid intelligent system aims to exploit the advantages of genetic and simulated annealing algorithms and, at the same time, alleviate their limitations. To evaluate the effectiveness of the hybridGSA method, three benchmark data sets, i.e., Breast Cancer Wisconsin, Pima Indians Diabetes, and Liver Disorders from the UCI Repository of Machine Learning, and a simulation experiment are used for evaluation. A comparative analysis on the real data sets and simulation data shows that the hybridGSA algorithm may offer efficient alternative to traditional training methods for the classification problem. KW - Artificial neural networks KW - data classification KW - training of neural networks KW - genetic algorithm KW - simulated annealing CR - [1] Fisher, R.A. “The use of multiple measurements in taxonomy problems” Annals of Eugenics, 7, 179–188 (1936). CR - [2] Xu, G. & Papageorgiou, L.G. “A mixed integer optimization for data classification” Computers & Industrial Engineering 56(4), 1205-1215 (2009). CR - [3] Fred, N. & Glover, F. “A linear programming approach to discriminant problem” Decision Sciences, 12, 68–74 (1981). CR - [4] Fred, N. & Glover, F. “Simple but powerful goal programming models for discriminant problems” European Journal of Operational Research, 7, 44–60 (1981). CR - [5] Lam, K.F., Choo, E.U., Moy, J.W. “Minimizing deviations from the group mean: A new linear programming approach for the two-group classification problem” European Journal of Operational Research, 88, 358–367 (1996). CR - [6] Lam, K.F. & Moy, J.W. “Improved linear programming formulations for the multi-group discriminant problem” Journal of Operational Research Society, 47, 1526–1529 (1996). UR - https://dergipark.org.tr/en/pub/gujs/issue//97891 L1 - https://dergipark.org.tr/en/download/article-file/83711 ER -