TY - JOUR T1 - Validities of Fractional Order Derivatives in Literatures Such as Riemann-Liouville, Euler, Caputo and Grünwald-Letnikov TT - Validities of Fractional Order Derivatives in Literatures Such as Riemann-Liouville, Euler, Caputo and Grünwald-Letnikov AU - Karci, Ali PY - 2021 DA - December Y2 - 2021 DO - 10.53070/bbd.982188 JF - Computer Science JO - JCS PB - Ali KARCI WT - DergiPark SN - 2548-1304 SP - 166 EP - 171 VL - 6 IS - 3 LA - en AB - In this paper, it has been proven that it would be more accurate to accept Euler, Riemann-Liouville, Caputo, and Grünwald-Letnikov methods as curve fitting or amplitude shifting methods without derivative definition KW - Fractional order derivatives KW - Grünwald-Letnikov derivative KW - Riemann-Liouville derivative KW - Caputo derivative N2 - In this paper, it has been proven that it would be more accurate to accept Euler, Riemann-Liouville, Caputo, and Grünwald-Letnikov methods as curve fitting or amplitude shifting methods without derivative definition CR - Newton, I. Philosophiæ Naturalis Principia Mathematica; Jussu Societatis Regiae ac Typis Joseph Streater. Prostat apud plures bibliopolas: London, UK, 1687. CR - L’Hôpital, G. Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes (Infinitesimal Calculus with Applications to Curved Lines); François Montalant: Paris, France, 1696. CR - L’Hôpital, G. Analyse des Infinement Petits; Relnk Books: Paris, France, 1715. CR - Das, S.,Functional fractional calculus, Springer, 2011. CR - Hatcher, W.S., The Logical Foundations of Mathematics, Pergamon Press, 1982. CR - Karcı, A.,”Kesirli Türev için Yapılan Tanımlamaların Eksiklikleri ve Yeni Yaklaşım”, TOK-2013 Turkish Automatic Control National Meeting and Exhibition, 2013a. CR - Karcı,A., “A New Approach for Fractional Order Derivative and Its Applications”, Universal Journal of Engineering Sciences, Vol:1, pp: 110-117, 2013b. CR - Karcı, A., “Properties of Fractional Order Derivatives for Groups of Relations/Functions”, Universal Journal of Engineering Sciences, vol:3, pp:39-45, 2015a. CR - Karcı,A., “The Properties of New Approach of Fractional Order Derivative”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol.30, pp:487-501, 2015b. CR - Karcı, A.,” Fractional order entropy New perspectives”, Optik - International Journal for Light and Electron Optics, Vol:127, pp:9172-9177, 2016. CR - Karcı, A.,” Malatya Functions: Symmetric Functions Obtained by Applying Fractional Order Derivative to Karcı Entropy”, Anatolian Science Journal of Computer Sciences, Vol:2, pp:1-8, 2017. CR - Karcı, A.,” Properties of Karcı’s Fractional Order Derivative”, Universal Journal of Engineering Science, Vol:7, pp:32-38, 2019. CR - Karcı, A., Karcı, Ş.,” Discovering The Relationships between Fractional Order Derivatives and Complex Numbers”, Anatolian Science - journal of Computer Science, Vol:5, pp:42-53, 2020. UR - https://doi.org/10.53070/bbd.982188 L1 - https://dergipark.org.tr/en/download/article-file/1922328 ER -