TY - JOUR T1 - Efficacy of a pilot-scale ultrasonication system for pasteurization of milk AU - Akdemir Evrendilek, Gülsün AU - Bodruk, Anıl AU - Acar, Furkan PY - 2021 DA - December Y2 - 2021 DO - 10.53663/turjfas.996406 JF - Turkish Journal of Food and Agriculture Sciences JO - Turk J Food Agric Sci PB - Burhan ÖZTÜRK WT - DergiPark SN - 2687-3818 SP - 50 EP - 55 VL - 3 IS - 2 LA - en AB - This study aimed to test a pilot-scale continuous ultrasonication (US) system to pasteurize whole milk in terms of physical properties, energy consumption, and inactivation of alkaline phosphatase (ALP), total mesophilic aerobic bacteria (TMAB), total coliform (TC), total enterobactericeae (TE), and Escherichia coli. Except for those treated by 90% amplitude for 20 and 30 min, the samples were found negative for ALP activity. Inactivation of TC, TMAB, TE, and E. coli rose with an increased amplitude and temperature. The maximum cost was estimated at 2.778,00 € for the system and at 3.624,00 € for plate heat exchanger to pasteurize 20.000 L of milk. 96.52% amplitude, 40 min, and 53.50 °C were determined jointly as the optimal operational settings. KW - Ultrasonication KW - Milk processing KW - Optimization KW - Alkaline phosphatase KW - Cost analyses CR - Asaithambi, N., Singha, P., Dwivedi, M., & Singh, S. K. (2019). Hydrodynamic cavitation and its application in food and beverage industry: A review. Journal of Food Process Engineering, 42(5), e13144. https://doi.org/10.1111/jfpe.13144 CR - Ashokkumar, M., Bhaskaracharya, R., Kentish, S., Lee, J., Palmer, M., & Zisu, B. (2010). The ultrasonic processing of dairy products—An overview. Dairy Science & Technology, 90(2), 147–168. https://doi.org/10.1051/dst/2009044 CR - Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G. V. (2011). Ultrasound Applications in Food Processing. In H. Feng, G. Barbosa-Canovas, & J. Weiss (Eds.), Ultrasound Technologies for Food and Bioprocessing (pp. 65–105). Springer. https://doi.org/10.1007/978-1-4419-7472-3_3 CR - Cameron, M., McMaster, L. D., & Britz, T. J. (2010). Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Science & Technology, 90(1), 119–119. https://doi.org/10.1051/dst/2010003 CR - Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V., & Pandit, A. (2016). Hydrodynamic cavitation: An emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Reviews in Chemical Engineering, 33. https://doi.org/10.1515/revce-2016-0032 CR - Chandrapala, J., Martin, G. J. O., Zisu, B., Kentish, S. E., & Ashokkumar, M. (2012). The effect of ultrasound on casein micelle integrity. Journal of Dairy Science, 95(12), 6882–6890. https://doi.org/10.3168/jds.2012-5318 CR - Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023 CR - Chouliara, E., Georgogianni, K. G., Kanellopoulou, N., & Kontominas, M. G. (2010). Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. International Dairy Journal, 20(5), 307–313. https://doi.org/10.1016/j.idairyj.2009.12.006 CR - De Jong, P., & Villamiel, M. (2000). Inactivation of Pseudomonas flourescens and Streptococcus thermophilus in trypticase soy broth and total bacteria count in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering, 45, 171–179. https://doi.org/10.1016/S0260-8774(00)00059-5 CR - Ganesan, B., Martini, S., Solorio, J., & Walsh, M. K. (2015). Determining the effects of high intensity ultrasound on the reduction of microbes in milk and orange juice using response surface methodology. International Journal of Food Science, 2015, 1–7. https://doi.org/10.1155/2015/350719 CR - Gogate, P., & Pandit, A. (2001). Hydrodynamic cavitation reactors: A state of the art review. Reviews in Chemical Engineering, 17, 1–85. https://doi.org/10.1515/REVCE.2001.17.1.1 CR - Griffiths, M. W. (1986). Use of milk enzymes as indices of heat treatment. Journal of Food Protection, 49(9), 696–705. https://doi.org/10.4315/0362-028X-49.9.696 CR - Martini, S. (2013). Common Uses of Power Ultrasound in the Food Industry. In S. Martini (Ed.), Sonocrystallization of Fats (pp. 27–33). Springer. https://doi.org/10.1007/978-1-4614-7693-1_4 CR - McSweeney, P. L. H., & Fox, P. F. (2009). Significance of Lactose in Dairy Products. In P. McSweeney & P. F. Fox (Eds.), Advanced Dairy Chemistry: Volume 3: Lactose, Water, Salts and Minor Constituents (pp. 35–104). Springer. https://doi.org/10.1007/978-0-387-84865-5_3 CR - Milly, P. J., Toledo, R. T., Kerr, W., & Armstead, D. (2008). Hydrodynamic cavitation: characterization of a novel design with energy considerations for the ınactivation of Saccharomyces cerevisiae in apple juice. Journal of Food Science, 73, M298-303. https://doi.org/10.1111/j.1750-3841.2008.00827.x CR - Milly, P., Toledo, R., Harrison, M., & Armstead, D. (2007). Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods. Journal of Food Science, 72, M414-22. https://doi.org/10.1111/j.1750-3841.2007.00543.x CR - Munir, M., Nadeem, M., Qureshi, T. M., Leong, T. S. H., Gamlath, C. J., Martin, G. J. O., & Ashokkumar, M. (2019). Effects of high pressure, microwave and ultrasound processing on proteins and enzyme activity in dairy systems—A review. Innovative Food Science and Emerging Technologies, 57. CR - Nguyen, N. H. A., & Anema, S. G. (2017). Ultrasonication of reconstituted whole milk and its effect on acid gelation. Food Chemistry, 217, 593–601. https://doi.org/10.1016/j.foodchem.2016.08.117 CR - Pegu, K., & Arya, S. S. (2021). Comparative assessment of HTST, hydrodynamic cavitation and ultrasonication on physico-chemical properties, microstructure, microbial and enzyme inactivation of raw milk. Innovative Food Science & Emerging Technologies, 69, 102640. https://doi.org/10.1016/j.ifset.2021.102640 CR - Prasantha, B. D. R., & Wimalasiri, K. M. S. (2019). Effect of HTST thermal treatments on end-use quality characteristics of goat milk. International Journal of Food Science, 2019, 1801724. https://doi.org/10.1155/2019/1801724 CR - Salve, A. R., Pegu, K., & Arya, S. S. (2019). Comparative assessment of high-intensity ultrasound and hydrodynamic cavitation processing on physico-chemical properties and microbial inactivation of peanut milk. Ultrasonics Sonochemistry, 59, 104728. https://doi.org/10.1016/j.ultsonch.2019.104728 CR - Shamsi, K., Versteeg, C., Sherkat, F., & Wan, J. (2008). Alkaline phosphatase and microbial inactivation by pulsed electric field in bovine milk. Innovative Food Science & Emerging Technologies, 9, 217–223. https://doi.org/10.1016/j.ifset.2007.06.012 CR - Tao, N., Liu, Y., & Zhang, M. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International Journal of Food Science & Technology, 44, 1281–1285. https://doi.org/10.1111/j.1365-2621.2009.01947.x UR - https://doi.org/10.53663/turjfas.996406 L1 - https://dergipark.org.tr/en/download/article-file/1978126 ER -