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Abstract
Let R be a unital ring with involution. The (j, m)-core inverse of a complex matrix
was extended to an element in R. New necessary and sufficient conditions such that an
element in R to be (j, m)-core invertible are given. Moreover, several additive and product
properties of two (j, m)-core invertible elements are investigated and a order related to
the (j, m)-core inverse is introduced.
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1. Introduction
Throughout this paper, R denotes a unital ring with involution, i.e., a ring with unity

1, and a mapping a 7→ a∗ that satisfies (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for
all a, b ∈ R. Let a, x ∈ R. If axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa hold, then x
is called a Moore-Penrose inverse of a. If such an element x exists, then it is unique and
denoted by a†. The set of all Moore-Penrose invertible elements in R will be denoted by
R†. If the equation axa = a and (ax)∗ = ax hold, then x is called a {1, 3}-inverse of a.

An element a ∈ R is said to be Drazin invertible if there exists x ∈ R such that ax = xa,
xax = x and ak = ak+1x for some nonnegative integer k. The element x is unique if it
exists and denoted by aD [3]. The smallest positive integer k in the definition of the Drazin
inverse is called the index of a, denoted by ind(a). If ind(a) ≤ 1, then a is group invertible
and the group inverse of a is denoted by a#. Thus, a# satisfies a#aa# = a#, a#a = aa#

and aa#a = a. The sets of all Drazin invertible and all group invertible elements in R will
be denote by RD and R#, respectively.

For an element a in a ring R, we denote aR = {ax | x ∈ R} and Ra = {xa | x ∈ R}. The
notion of the core inverse of a complex matrix was introduced by Baksalary and Trenkler
[1]. In [8], Rakić et al. generalized the core inverse of a complex matrix to the case of
an element in R. More precisely, let a, x ∈ R. If axa = a, xR = aR and Rx = Ra∗,
then x is called a core inverse of a. If such an element x exists, then it is unique and
denoted by a#©. The set of all core invertible elements in R will be denoted by R#©. There
are some generalizations of the core inverse, for example, the B-T inverse in [2] and the
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DMP-inverse in [5]. Moreover, the B-T inverse of a is a� = (a2a†)† by [2, Definition 1] and
the DMP-inverse of a is aD,† = aDaa† by [5, Theorem 2.2].

Let N denote the set of all positive integers and Cn×n denote the set of all n×n complex
matrices over the complex filed C. A matrix A ∈ Cn×n is called an EP (range-Hermitian)
matrix if R(A) = R(A∗) [9], where R(A) is the range (or column space) of A. An element
a ∈ R is said to be an EP element if a ∈ R† ∩ R# and a† = a# (see [4]). The set of all EP
elements in R will be denoted by REP.

The (j, m)-core inverse was introduced in [13] for a complex matrix. Let A ∈ Cn×n and
j, m ∈ N. A matrix X ∈ Cn×n is called a (j,m)-core inverse of A, if it satisfies X = ADAX
and AmX = Am(Aj)†. If such X exists, then it is unique and denoted by A	

j,m.
We introduce and characterize the (j, m)-core inverse of an element in a ring with invo-

lution, as extension of corresponding inverse of a square complex matrix. Some additive
and product properties of two (j, m)-core invertible elements are presented. Also, we define
a order related to the (j, m)-core inverse.

2. The (j, m)-core inverse in rings
Let us start this section with some useful lemmas. The next lemma was proved for

complex matrices in [13], but for elements in rings can be proved in a similar way, thus
we omit the proof.

Lemma 2.1. Let a ∈ R. If there exists x ∈ R such that axk+1 = xk and xak+1 = ak for
some k ∈ N, then

(1) ak = xka2k = akxkak = axak;
(2) xk = akx2k = xkakxk = xaxk;
(3) akxk = ak+1xk+1;
(4) xkak = xk+1ak+1.

The following lemma was proved for complex matrices in [13, Lemma 2.5], but it is also
valid in a ring. For the convenience of the readers, here we will give the proof.

Lemma 2.2. Let a ∈ R. Then a ∈ RD if and only if there exists x ∈ R such that
axk+1 = xk and xak+1 = ak for some k ∈ N ∪ {0}. In this case, aD = xk+1ak.

Proof. Assume a ∈ RD with ind(a) = k. If we let x = aD, then it is easy to check that
axk+1 = xk and xak+1 = ak. Conversely, let y = xk+1ak, we shall prove that y is the
Drazin inverse of a. Have in mind axk+1 = xk and xak+1 = ak, we get

a(xk+1ak) = xkak = xk+1aka, (2.1)

that is, xk+1ak and a commute. Then, by (1) and (4) in Lemma 2.1, we have that

(xk+1ak)a(xk+1ak) =xk+1ak+1xk+1ak = xkak(xk+1ak)

=xkxk+1akak = xk+1xka2k = xk+1ak.
(2.2)

From (1) in Lemma 2.1, we obtain

(xk+1ak)ak+1 = x(xka2k)a = xaka = xak+1 = ak. (2.3)

Thus, we deduce that aD = xk+1ak, by the definition of the Drazin inverse and in view of
(2.1), (2.2) and (2.3). �

Corollary 2.3. Let a ∈ R. Then a ∈ R# if and only if there exists x ∈ R such that
ax2 = x and xa2 = a.

Now, we introduce the definition of the (j,m)-core inverse for an element in a ring.
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Definition 2.4. Let a ∈ RD and aj ∈ R† and j, m ∈ N. An element x ∈ R is called a
(j, m)-core inverse of a, if it satisfies

x = aDax and amx = am(aj)†. (2.4)
If a is (j,m)-core invertible, then the solution of (2.4) is unique and denoted by a	

j,m.
In fact, if x satisfies (2.4), then x = aDax = (aD)mamx = (aD)mam(aj)† = aDa(aj)†. It
is easy to check that if ind(a) ≤ m, then x = aDa(aj)† is the unique solution of (2.4).
In [13, Example 4.4], the authors have shown that if m < ind(A), then the equations in

(2.4) may be not consistent. That is, if we let A =
[

0 1
0 0

]
, it is easy to get ind(A) = 2

and AD = 0. Let m = j = 1 and suppose that X is the solution of system in (2.4), then
X = ADAX = 0, which gives AA† = AX = 0, thus A = AA†A = 0, this is a contradiction.
Theorem 2.5. Let a ∈ RD, aj ∈ R† and j, m ∈ N. Then the followings are equivalent:

(1) a is (j, m)-core invertible;
(2) there exists x ∈ R such that x = aDax and am(aj)† = aDam+1x;
(3) there exists x ∈ R such that x = aDax, am+1(aj)† = am+1x and am(aj)† =

aDam+1(aj)†.
Furthermore, the above element x is unique and x = a	

j,m.

Proof. (1) ⇒ (3). Suppose that a is (j, m)-core invertible. Then a	
j,m = aDaa	

j,m and
ama	

j,m = am(aj)†. The equality am+1(aj)† = am+1x is trivial and

am(aj)† =ama	
j,m = am(aDaa	

j,m) = aDam+1a	
j,m

=aDam+1(aDaa	
j,m) = aDam+1(aD)mama	

j,m

=aDam+1(aD)mam(aj)† = aDa2aDam(aj)†

=aDam+1(aj)†.

That is, we have am(aj)† = aDam+1(aj)†.
(3) ⇒ (2). It is sufficient to prove am(aj)† = aDam+1x. We have am(aj)† = aDaam(aj)† =

aDam+1x.
(2) ⇒ (1). Since amx = am(aDax) = aDam+1x = am(aj)†, thus x is the (j, m)-core

inverse of a by definition. �
If we take j = 1 and m = ind(a), the (j, m)-core inverse of a is the DMP-inverse of

a. That is, the (j, m)-core inverse of a is a generalization of the DMP-inverse of a. By
Theorem 2.5, we have the following corollary.
Corollary 2.6. Let a ∈ RD ∩ R† with ind(a) = k. Then the following are equivalent:

(1) a is DMP-invertible;
(2) there exists x ∈ R such that x = aDax and aka† = akx;
(3) there exists x ∈ R such that x = aDax and ak+1a† = ak+1x.

Furthermore, the above element x is unique and x = aD,†.
Proposition 2.7. Let a ∈ RD with ind(a) ≤ m. If there exists x ∈ R such that (akxk)∗ =
akxk, (xkak)∗ = xkak, axk+1 = xk and xak+1 = ak for some k ∈ N, then a is (k, m)-core
invertible and a	

k,m = xk.

Proof. By Lemma 2.1 and Lemma 2.2, we have akxkak = ak, xkakxk = xk, ak = xka2k

and aD = xk+1ak. Equalities (akxk)∗ = akxk and (xkak)∗ = xkak imply that xk is the
Moore-Penrose inverse of ak. Thus, a is (k, m)-core invertible by ind(a) ≤ m. From
aD = xk+1ak, we can obtain (aD)l = xl−1aD for arbitrary l ∈ N by induction. Thus

a	
k,m = aDa(ak)† = (aD)kakxk = xk−1aDakxk = xk(xka2k)xk = xkakxk = xk
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That is a	
k,m = xk. �

Example 2.8. The (j, m)-core inverse is different from the DMP-inverse, B-T inverse

and core inverse. Let a =

 1 2 3
0 0 1
0 0 0

 ∈ C3×3 and j ≥ 2. Then it is easy to check

that a is not core invertible by ind(a) = 2, aD,† =

 1 2 0
0 0 0
0 0 0

 by aD,† = aDaa† and

a� =

 1/5 0 0
2/5 0 0
0 0 0

 by a� = (a2a†)†, but a	
j,m =

 1 0 0
0 0 0
0 0 0

.

Lemma 2.9 ([14, Theorem 3.1]). Let a, x ∈ R. Then a is core invertible with a#© = x if
and only if (ax)∗ = ax, xa2 = a and ax2 = x.

By Remark 4.7 in [13], if ind(a) ≤ m, it is not difficult to see that a	
j,m = a	

j,m+1. That
is to say, the (j, m)-core inverse of a coincides with the (j, m + 1)-core inverse of a. Thus,
for notational convenience in the sequel, we only discuss the ind(a) = m case. For j ∈ N,
we shall assume that R	

j,m = {a ∈ R | a is (j,m)-core invertible with and ind(a) = m}.

Theorem 2.10. Let a ∈ R	
j,m with ind(a) ≤ j and x ∈ R. Then the following are

equivalent:
(1) a	

j,m = x;
(2) ajxaj = aj, (ajx)∗ = ajx and ajx2 = x;
(3) ajxaj = aj, (ajx)∗ = ajx, xajx = x and xaj = aDa;
(4) x is the core inverse of aj (or equivalently ajx2 = x, (ajx)∗ = ajx and x(aj)2 = aj).

Proof. (1) ⇒ (2)-(4). Let x = aDa(aj)†. First notice that ajx = aj(aj)† is Hermitian,
ajxaj = aj(aj)†aj = aj and

ajx2 = (ajx)x = aj(aj)†aj(aD)j(aj)† = aj(aD)j(aj)† = aDa(aj)† = x.

Further, xaj = (aD)jaj(aj)†aj = (aD)jaj = aDa implies xajx = aDax = x and x(aj)2 =
(xaj)aj = aDaaj = aj . Hence, x is the core inverse of aj by Lemma 2.9.

(4) ⇒ (2). The equalities ajx2 = x, (ajx)∗ = ajx and x(aj)2 = aj yield ajxaj =
ajx2(aj)2 = x(aj)2 = aj .

(2) ⇒ (1). Suppose that there exists x ∈ R such that ajxaj = aj , (ajx)∗ = ajx and
ajx2 = x. Then aj(aj)† = ajxaj(aj)† = (aj(aj)†ajx)∗ = ajx gives

am(aj)† = amaDa(aj)† = am(aD)jaj(aj)† = am(aD)jajx = amx.

and
x = ajx2 = aDaajx2 = aDax,

i.e. x is the (j, m)-core inverse of a.
(3) ⇒ (1). If there exists x ∈ R such that ajxaj = aj , (ajx)∗ = ajx, xajx = x and

xaj = aDa, then we obtain that x is the (j, m)-core inverse of a by aj(aj)(1,3) = aj(aj)† for
arbitrary {1, 3}-inverse (aj)(1,3) of aj and x = xajx = aDax = (aD)jajx = (aD)jaj(aj)† =
aDa(aj)†. �

Recall that, for e = e2 ∈ R, we can represent any a ∈ R as a matrix form

a =
[

a11 a12
a21 a22

]
e×e

,

where a11 = eae, a12 = ea(1 − e), a21 = (1 − e)ae and a22 = (1 − e)a(1 − e).
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Theorem 2.11. Let a ∈ R and j ∈ N. Then a ∈ R	
j,m if and only if a ∈ RD

a =
[

a1 0
0 a2

]
e×e

and am(aj)† =
[

q1 q2
0 0

]
e×e

,

where e = aaD,a1 is invertible in eRe. Moreover, the (j, m)-core inverse of a is given by

a	
j,m =

[
a−m

1 q1 a−m
1 q2

0 0

]
e×e

.

Proof. Suppose that a ∈ R	
j,m and let e = aDa. Then e2 = (aDa)2 = aDa = e, ea(1−e) =

aaDa(1 − aDa) = 0 and (1 − e)ae = 0. Hence,

a =
[

a1 0
0 a2

]
e×e

.

Since a1aD = aDa2aD = aDa = aDa1 = e, so a1 is invertible in eRe and a−1
1 = aD. Thus,

aD = aDaaDaaD =
[

aD 0
0 0

]
e×e

=
[

a−1
1 0
0 0

]
e×e

.

Let
a	

j,m =
[

x1 x2
x3 x4

]
e×e

and am(aj)† =
[

q1 q2
q3 q4

]
e×e

.

From a	
j,m = aDaa	

j,m =
[

e 0
0 0

]
e×e

a	
j,m, we obtain x3 = x4 = 0. Since am(aj)† =

aDaam(aj)†, then q3 = q4 = 0.
Conversely, let

x =
[

a−m
1 q1 a−m

1 q2
0 0

]
e×e

we get x = aDax and amx = am(aj)†. So, a ∈ R	
j,m and x = a	

j,m. �
An element a ∈ R is called ∗-DMP (Drazin-Moore-Penrose) of index k if k is the smallest

natural number such that (ak)# and (ak)† exist and (ak)# = (ak)† (see [7, Definition 6]).
Before we answer when a (k, k)-core invertible element is an ∗-DMP element, some lemmas
are necessary.

Lemma 2.12 ([12, Theorem 3.9]). Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R# and aR ⊆ a∗R;
(3) a ∈ R# and Ra ⊆ Ra∗;
(4) a ∈ R# and a∗R ⊆ aR;
(5) a ∈ R# and Ra∗ ⊆ Ra.

Lemma 2.13 ([7, Theorem 10]). Let a ∈ R. Then a is ∗-DMP of index k if and only if
aD exists of index k and aaD is Hermitian.

For a, b ∈ R, the notations ◦a = {x ∈ R | xa = 0}, a◦ = {x ∈ R | ax = 0} and
[a, b] = ab − ba will be used.

Lemma 2.14 ([10, Lemma 8]). Let a, b ∈ R. Then:
(1) aR ⊆ bR implies ◦b ⊆ ◦a and the converse is valid whenever b is regular;
(2) Ra ⊆ Rb implies b◦ ⊆ a◦ and the converse is valid whenever b is regular.
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In the following theorem, we will give some necessary and sufficient conditions such that
a (k, k)-core invertible element to be a ∗-DMP element.

Theorem 2.15. Let a ∈ R	
k,k. Then the following are equivalent:

(1) a is ∗-DMP of index k;
(2) akR ⊆ (ak)∗R;
(3) Rak ⊆ R(ak)∗;
(4) ◦[(ak)∗] ⊆ ◦(ak);
(5) [(ak)∗]◦ ⊆ (ak)◦;
(6) a	

k,kak is Hermitian;
(7) [a	

k,k, ak] = 0;
(8) a	

k,k = (aD)k;
(9) a	

k,k = (ak)†;
(10) a	

k,kak(ak)∗ = (ak)∗;
(11) a	

k,k = (ak)†aaD;
(12) [aka	

k,k, a	
k,kak] = 0;

(13) [a	
k,k, (aD)k] = 0;

(14) there exists x ∈ R such that axk+1 = xk, xak+1 = ak and xkak is Hermitian.

Proof. (1) ⇒ (2). Since a is ∗-DMP of index k, then ak is EP, and thus akR ⊆ (ak)∗R
by Lemma 2.12.

(2) ⇒ (1). From akR ⊆ (ak)∗R, we have ak = (ak)∗r for some r ∈ R. Thus ak =
(ak)∗r = (akaDa)∗r = (aDa)∗(ak)∗r = (aDa)∗ak. Post-multiplying ak = (aDa)∗ak by
(aD)k yields that aaD = (aDa)∗aaD, that is, a is ∗-DMP by Lemma 2.13 and a (k, k)-core
invertible element is Drazin invertible.

The proof of (1) ⇔ (3) can be proved in a similar way of (1) ⇔ (2). The equivalences
(2) ⇔ (4) and (3) ⇔ (5) follow by Lemma 2.14 and the regularity of ak is regular (because
a ∈ R	

k,k).
(1) ⇔ (6). Since a	

k,kak = aDa(ak)†ak = (aD)kak(ak)†ak = (aD)kak = aDa, then a is
∗-DMP by Lemma 2.13. The opposite implication can be proved in a similar way.

(1) ⇔ (7). It is easy to check that [a	
k,k, ak] = 0 is equivalent to aaD = ak(ak)†. Thus,

the equivalence can be seen by Lemma 2.13.
(1) ⇒ (8), (1) ⇒ (9) and (1) ⇒ (11) are follow by (ak)# = (aD)k, for ind(a) = k.
(8) ⇒ (1). The hypothesis a	

k,k = (aD)k implies aaD = ak(aD)k = aka	
k,m = akaDa(ak)† =

ak(ak)† is Hermitian. So, by Lemma 2.13, a is ∗-DMP.
(9) ⇒ (6). Using a	

k,k = (ak)†, we get a	
k,kak = (ak)†ak is Hermitian.

(10) ⇔ (6). Post-multiplying a	
k,kak(ak)∗ = (ak)∗ by [(ak)†]∗, we observe that a	

k,kak =
(ak)†ak is Hermitian. The converse is obvious.

(11) ⇒ (6) follows because a	
k,kak = (ak)†aaDak = (ak)†ak is Hermitian.

(7) ⇒ (12) is evident.
(7) ⇒ (13) is obvious by the commutativity of the Drazin inverse and (aD)k = (ak)D.
(12) ⇒ (1). Applying [aka	

k,k, a	
k,kak] = 0, aka	

k,ka	
k,kak = aaD and a	

k,kakaka	
k,k =

ak(ak)†, we note that aaD = ak(ak)† is Hermitian. Therefore, a is ∗-DMP by Lemma 2.13.
(13) ⇒ (8). Because a	

k,k(aD)k = (aD)kak(ak)†ak(aD)2k = aDa(aD)2k = (aD)2k and
(aD)ka	

k,k = (aD)kaDa(ak)† = (aD)k(ak)†, the assumption [a	
k,k, (aD)k] = 0 gives (aD)2k =

(aD)k(ak)†. Thus, (aD)k = ak(aD)2k = ak(aD)k(ak)† = aDa(ak)† = a	
k,k.

(1) ⇔ (14). It is trivial by Lemma 2.2 and Lemma 2.13. Have in mind, aDa =
xk+1aka = xk+1ak+1 = xkak. �
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There exists some partial orderings base on the core inverse, for example [1,11], as the
(j, m)-core inverse is a generalization of the core inverse, now we will introduce a ordering
base on the the (j, m)-core inverse.

Lemma 2.16. Let a ∈ R	
j,m and b ∈ R	

l,n. If ab = ba and a∗b = ba∗, then ab	
l,n = b	

l,na,
a	

j,mb = ba	
j,m and a	

j,mb	
l,n = b	

l,na	
j,m.

Proof. Notice that a	
j,m = aDa(aj)† and b	

l,n = bDb(bl)†. By ab = ba and [3, Theorem 1],
we have that a and aD commute with b and bD. Since ab = ba and ab∗ = b∗a, then a
commute with bl and (bl)∗. Using [6, Lemma 1.1], we deduce that a commutes with (bl)†,
which implies that a commutes with b	

l,n. In the same way, we verify that a	
j,mb = ba	

j,m

and a	
j,mb∗ = b∗a	

j,m, which imply a	
j,mb	

l,n = b	
l,na	

j,m. �

Lemma 2.17. Let a, b ∈ RD with ab = ba and p, q ∈ N. If ind(a) = p and ind(b) = q,
then ind(ab) ≤ max (p, q).

Proof. Since ind(a) = p and ind(b) = q, we have that ap = aDap+1 and bq = bDbq+1.
Suppose that q ≤ p. By ab = ba and [3, Theorem 1], we have that (ab)p = apbp =
aDap+1bDbp+1 = (ab)D(ab)p+1, which gives that ind(ab) ≤ p. Similarly, if p ≤ q, then
ind(ab) ≤ q. Thus, ind(ab) ≤ max (p, q). �

By the definition of the (j, m)-core inverse, the condition ind(ab) ≤ max (p, q) in
Lemma 2.17 is useful in the following theorem.

Theorem 2.18. Let a, b ∈ R	
j,m such that ab = ba and a∗b = ba∗. Then ab ∈ R	

j,m and
(ab)	

j,m = b	
j,ma	

j,m = a	
j,mb	

j,m.

Proof. The assumption ab = ba gives that ab ∈ RD and (ab)D = bDaD = aDbD. Also, we
can easily prove that (ab)j ∈ R† and [(ab)j ]† = (bj)†(aj)† = (aj)†(bj)†. By Lemma 2.17,
we have ind(ab) ≤ max {ind(a), ind(b)} = m. Therefore, ab is (j, m)-core invertible and

(ab)	
j,m = (ab)Dab[(ab)j ]† = bDaDab(bj)†(aj)† = bDb(bj)†aDa(aj)† = b	

j,ma	
j,m = a	

j,mb	
j,m.

That is, (ab)	
j,m = b	

j,ma	
j,m = a	

j,mb	
j,m. �

It is well-known that for two Drazin invertible elements a, b ∈ RD with ab = ba = 0,
then (a + b)D = aD + bD.

Lemma 2.19. Let a, b ∈ RD with ab = ba = 0 and p, q ∈ N. If ind(a) = p and ind(b) = q,
then ind(a + b) ≤ max (p, q).

Proof. Since ind(a) = p and ind(b) = q, we have that ap = aDap+1 and bq = bDbq+1.
Suppose that q ≤ p. By ab = ba = 0 and [3, Corollary 1], we have that (a+b)p = ap +bp =
aDap+1 + bDbp+1 = (a + b)D(a + b)p+1, which gives that ind(a + b) ≤ p. Similarly, if p ≤ q,
then ind(a + b) ≤ q. Thus, ind(a + b) ≤ max (p, q). �

Theorem 2.20. Let a, b ∈ R	
j,m such that ab = ba = 0 = a∗b = ba∗. Then a + b ∈ R	

j,m

and (a + b)	
j,m = a	

j,m + b	
j,m.

Proof. First, we have that a+b ∈ RD and (a+b)D = aD +bD by [3, Corollary 1]. Further,
we can verify that (a + b)j ∈ R† and [(a + b)j ]† = (aj)† + (bj)†. By Lemma 2.19, we have
ind(a + b) ≤ max {ind(a), ind(b)} = m. So, a + b is (j, m)-core invertible and

(a + b)	
j,m = (aD + bD)(a + b)[(aj)† + (bj)†] = aDa(aj)† + bDb(bj)† = a	

j,m + b	
j,m.

That is, (a + b)	
j,m = a	

j,m + b	
j,m. �
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Let RD,† denotes the set of all DMP invertible elements of R. Since the (j, m)-core
inverse of a is a generalization of the DMP-inverse of a, thus by Theorem 2.18 and Theo-
rem 2.20, we have the following two corollaries.

Corollary 2.21. Let a, b ∈ RD,† such that ab = ba and a∗b = ba∗. Then ab is DMP
invertible and (ab)D,† = bD,†aD,† = aD,†bD,†.

Corollary 2.22. Let a, b ∈ RD,† such that such that ab = ba = 0 = a∗b = ba∗. Then a + b
is DMP invertible and (a + b)D,† = aD,† + bD,†.

3. The 	-core relation
As the (j, m)-core is a generalation of the core inverse and the core partial ordering was

introduced in [1], here we introduce an ordering base on the (j, m)-core.

Definition 3.1. Let a be (j, m)-core invertible and b ∈ R. Then a is below b under the
	-core relation (denoted by a ≤	 b) if

a	
j,ma = a	

j,mb and aa	
j,m = ba	

j,m.

Lemma 3.2. Let a be (j, m)-core invertible and b ∈ R with ind(a) ≤ min(j, m). Then
(1) a	

j,ma = a	
j,mb ⇔ (aj)†a = (aj)†b ⇔ (aj)∗a = (aj)∗b ⇔ a∗aj = b∗aj ⇔ a∗aD =

b∗aD;
(2) aa	

j,m = ba	
j,m ⇔ aaD = baD ⇔ aj+1 = baj.

Proof. (1). Pre-multiplying a	
j,ma = a	

j,mb by (aj)†aj yields (aj)†a = (aj)†b. Pre-
multiplying (aj)†a = (aj)†b by aDa yields a	

j,ma = a	
j,mb. The equivalence (aj)†a = (aj)†b

⇔ (aj)∗a = (aj)∗b is obvious by ((aj)†)◦ = ((aj)∗)◦. The remaining is obvious.
(2). First we show that aa	

j,m = ba	
j,m ⇔ a2aD = baDa ⇔ aj+1 = baj . Post-multiplying

aa	
j,m = ba	

j,m by aj yields a2aD = baDa. Post-multiplying a2aD = baDa by (aj)† yields
aa	

j,m = ba	
j,m. Post-multiplying aa	

j,m = ba	
j,m by a2j yields aj+1 = baj . Post-multiplying

aj+1 = baj by (aD)j(aj)† yields aa	
j,m = ba	

j,m. By post-multiplying aD on a2aD = baDa,
we have aaD = baD and aaD = baD implies a2aD = baDa is trivial. Thus a2aD = baDa if
and only if aaD = baD. �

Theorem 3.3. Let a be (j, m)-core invertible and b ∈ R with ind(a) ≤ min(j, m). Then
the following statements are equivalent:

(1) a ≤	 b;
(2) a∗aj = b∗aj and aj+1 = baj;
(3) a∗aD = b∗aD and aaD = baD;
(4) There exists an idempotent p ∈ R such that aDR = pR, ap = bp and a∗p = b∗p;
(5) There exists an Hermitian idempotent q ∈ R such that ajR = qR, aq = bq and

qa = qb.

Proof. (1) ⇔ (2) ⇔ (3). These equivalences follow by Lemma 3.2.
(1) ⇒ (4). For p = aDa, first we have that aDR = aDaR = pR. By (1) and Lemma

3.2, we observe that ap = (aaD)a = baDa = bp and a∗p = (a∗aD)a = b∗aDa = b∗p.
(4) ⇒ (1). Assume that there exists an idempotent p ∈ R such that aDR = pR,

ap = bp and a∗p = b∗p. Then aD = paD gives a∗aD = (a∗p)aD = b∗paD = b∗aD and
aaD = (ap)aD = bpaD = baD. Using Lemma 3.2, we deduce that (1) holds.

(1) ⇔ (5). We check this part similarly as (1) ⇔ (4). �

Theorem 3.4. The 	-core relation is a pre-order on the set of all (j, m)-core invertible
elements in R, where the index of these elements are less or equal min(j, m).
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Proof. Obviously, ≤	 is reflexive. To verify that ≤	 is transitive, suppose that a, b, c ∈ R
such that a and b are (j, m)-core invertible elements, a ≤	 b and b ≤	 c. Using Lemma
3.2, we obtain

a∗aD = b∗aD = b∗a(aD)2 = b∗b(aD)2 = b∗bj(aD)j+1 = c∗bj(aD)j+1 = c∗aD

and
aaD = baD = ba(aD)2 = b2(aD)2 = bl+1(aD)l+1 = cbl(aD)l+1 = cb(aD)2 = ca(aD)2 = caD.

Applying Theorem 3.3, we deduce that a ≤	 c. �

In the following example, we show that the relation “≤	" is not antisymmetric and so
it is not a partial order on the set of all (j, m)-core invertible elements in R.

Example 3.5. Let a =
[

0 1
0 0

]
and b =

[
0 0
2 0

]
∈ C2×2. Since aD = 0 = (aj)† and

bD = 0 = (bj)†, for j ≥ 2, then a	
j,m = 0 and b	

j,m = 0, which yield a	
j,ma = 0 = a	

j,mb =
aa	

j,m = ba	
j,m and bb	

j,m = 0 = ab	
j,m = b	

j,mb = 0 = b	
j,ma. Thus, a ≤	 b and b ≤	 a, but

a 6= b.
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