2-Transitive Frobenius Q-Groups

Temha ERKOÇ¹ and Erhan GÜZEL²

Abstract. A Q-group is a finite group all of whose irreducible complex characters are rationally- valued. In this paper, we find all 2-transitive Frobenius Q-groups.

Keywords: Q-Groups, Frobenius Groups.

AMS Subject Classification Number: 20C15.

INTRODUCTION

We use the following notations in this paper

Notation. C the field of complex numbers; *Z* the ring of rational integers; *Gen(x)* the set of generators of cyclic group $\langle x \rangle$; [x] the conjugacy class of *x*; $N_G(x)$ the normalizer of *x* in *G*; $C_G(x)$ the centralizer of *x* in *G*; *Aut(x)* the group of automorphisms of $\langle x \rangle$; φ Euler's function; ×| semidirect product; Q_8 the quaternion group of order 8; $E(p^n)$ the elemantary abelian *p*-group of order p^n .

*Q***-GROUPS**

Definition. A finite group whose complex characters are rationally-valued is called a Q-group.

For example, all of the symmetric groups and finite elemantary abelian 2-groups are Q-groups. Kletzing's lecture notes, [3], presents a detailed investigation into the structure of Q-groups.General classification of Q-groups has not been able to be done up to now, but some special Q-groups have been classified. Frobenius Q-groups were classified by [1].

¹ Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey, e-mail: erkoct@istanbul.edu.tr.

² Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey, e-mail: guzele@istanbul.edu.tr.

Let G be a finite group of order n and let ξ be a primitive n-th root of unity in the field C. Then, all of the complex character values of G lie in the subring $Z[\xi]$ of C. Moreover, if G is a Q-group, these values lie in Z since $Z[\xi] \cap Q = Z$. Now, we say that a finite group is a Q-group if and only if the values of its all the irreducible complex characters lie in Z.

Another characterization of Q-groups is the following theorem.

Theorem 1. Let G be a finite group. Then, G is a Q-group if and only if for every $x \in G$, $Gen(x) \subseteq [x]$ i.e. for every $x \in G$, $N_G(x)/C_G(x) \cong Aut(x)$ [3].

Now, we can easily see the following corollary.

Corrollary 2. Let G be a Q-group. Then:

1)
$$[N_G(x): C_G(x)] = |Aut(x)| = \varphi(|x|)$$
, for every $x \in G$.

- 2) If $G \neq \{1\}, 2 ||G|.$
- 3) If N is a normal subgroup of G, then G/N is a Q-group.

FROBENIUS GROUPS

Definition. Let *G* be a transitive and non-regular permutation group on Ω , $|\Omega| \in IN$, $\alpha \in \Omega$, $H = G_{\alpha}$. Then, *G* is called a Frobenius group with complement *H* if and only if the identity element of *G* is unique element that fixes more than one element of Ω .

Definition. A trivial intersection set in a group *G* is a subset *S* of *G* such that for all $g \in G$, either $S^g = S$ or $S^g \cap S \subseteq \{1\}$.

Lemma 3. Let G be a finite group, $\{1\} \neq H$ a proper subgroup of G. Then the following are equivalent:

(a) G is a Frobenius group with complement H.

(b) *H* is a trivial intersection set and $H = N_G(H)$. [2]

Now we can say that a finite group *G* is a Frobenius group if and only if it contains a proper subgroup $H \neq \{1\}$, called a Frobenius complement, such that $H \cap H^x = \{1\}$ for all $x \notin H$.

By Frobenius Theorem [2, p.63], a Frobenius group G with complement H has a normal subgroup K, called Frobenius kernel, such that $G = K \times |H|$. If $K = \{1 = x_1, ..., x_n\}$ where $n \in IN$, then we have $G = K \cup \left[\bigcup_{i=1}^n (H^{x_i} - \{1\})\right]$, called

Frobenius partition.

Definition. Let G be a group and φ be a automorphism of G. Then, φ is called fixed-point-free automorphism if $\varphi(g) \neq g$ for every $g \in G - \{1\}$.

Let *G* be a Frobenius group with kernel *K* and complement *H*. Then, for every $h \in H - \{1\}, k \mapsto h^{-1}.k.h$ is an automorphism of *K* fixing only the element $1 \in K$. Thus we can say that all elements of *H* except 1 are fixed-point-free of *K*. Moreover, a semi-direct group $G = K \times |H|$ is a Frobenius group if *h* is fixed-point-free of *K* for every $h \in H - \{1\}$.

Lemma 4. Let *G* be a tranzitive permutation group on Ω , $|\Omega| \in IN - \{1\}$. Then *G* is 2-transitive if and only if $G = G_{\alpha} \cup G_{\alpha} x G_{\alpha}$ for all $\alpha \in \Omega$ and $x \in G - G_{\alpha}$ [4].

Theorem 5. Let *G* be a Frobenius group with kernel *K* and complement *H*. Then *G* is 2-transitive if and only if |K| = |H|+1.

Proof. By the definition of Frobenius group, *G* is a tranzitive permutation group on Ω , $|\Omega| \in IN$ and there is $\alpha \in \Omega$ such that $H = G_{\alpha}$. By Lemma 4., we know that *G* is 2-transitive if and only if $G = H \cup H \times H$ for every $x \in G - H$. Therefore, if *G* is 2-transitive, then we have

$$|G| = |H| + |H x H| = |H| + \frac{|H| \cdot |H^{x}|}{|H \cap H^{x}|} = |H| + \frac{|H|^{2}}{|H \cap H^{x}|}$$

for every $x \in G - H$. Since H is a trivial intersection set in G and $H = N_G(H)$ by Lemma3., we have $|H \cap H^x| = 1$ for every $x \in G - H$. Thus, $|G| = |H| + |H|^2$. Also, since $|G| = |K| \cdot |H|$ by Frobenius Theorem, we have $|K| \cdot |H| = |G| = |H| + |H|^2$ and so |K| = |H| + 1. Conversely, we can easily that if |K| = |H| + 1, then G is 2-transitive.

Theorem 6. Let G be a Frobenius Q-group with kernel K and complement H. Then, $H \cong Z_2$ or $H \cong Q_8$. Moreover,

1) If $H \cong Z_2$, then K is an elemantary abelian 3-group and for every $t \in K$,

 $t^u = t^{-1}$ where $1 \neq u \in H$.

2) If $H \cong Q_8$, then K is an elemantary abelian p-group where p=3 or p=5. [1]

2-TRANSITIVE FROBENIUS Q-GROUPS

All 2-transitive Frobenius Q-groups are given by the following theorem.

Theorem. Let G be a 2-transitive Frobenius Q-group. Then, $G \cong S_3$ or $G \cong E(3^2) \times |Q_8$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra Z_3Q_8 .

Proof. Let G be a 2-transitive Frobenius Q-group with kernel K and complement H. By Theorem 6, we know that $H \cong Z_2$ or $H \cong Q_8$.

If H ≅ Z₂, then K is an elementary abelian 3-group and for every t∈K,
t^u =t⁻¹ where 1≠u∈H by Theorem 6. Moreover, since G is 2-transitive, we have |K|=|H|+1=3 by Theorem 5. Therefore, G ≅ E(3) × | Z₂ ≅ S₃. Conversely, we can see easily that S₃ is a 2-transitive Frobenius Q-group.

2) If $H \cong Q_8$, then K is an elementary abelian p-group where p = 3 or p = 5by Theorem 6. Since G is 2-transitive, we have |K| = |H| + 1 = 9 by Theorem 5. Then, K must be an elemantary abelian 3-group of order 9. Since $K \triangleleft G$, H acts on K by conjugation. Thus, K may be considered as a Z_3H -module, so K defines a representation of H over the field Z_3 . Since 3||H|, we can use ordinary representation theory, so K is a direct sum of some irreducible modules of group ring Z_3H by Maschke's Theorem and Wedderburn's Theorem. H has exactly five non-isomorphic irreducible module over the field Z_3 and four of them are 1dimensional so the other is 2-dimensional. Since $\chi(u) = 1 \in \mathbb{Z}_3$ for every 1dimensional representation χ of H where u is the involusion, K must be the 2dimensional irreducible module of group ring Z_3H . Therefore, we have $G \cong E(3^2) \times |Q_8|$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra Z_3Q_8 . Conversely, let $G \cong E(3^2) \times |Q_8|$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra Z_3Q_8 . Then, G is a Frobenius group with kernel K ($\cong E(3^2)$) and complement H ($\cong Q_8$) since the involution of H is fixed-point-free of K. Moreover, since |K| = |H| + 1, G is 2-transitive by Theorem 5. Since G is a Frobenius group, we have Frobenius partition $G = K \cup \left[\bigcup_{g \in K} (H^g - \{1\}) \right]$. Also, for every $g \in K$, $H^g (\cong Q_8)$ is a Q-group and

for every $1 \neq x \in K$, $x^u = x^2$ where *u* is the involusion of *H*. Thus, by the definition of Q-group, we can see easily that *G* is a *Q*-group.

REFERENCES

[1] DARAFSHEH, M.R., SHARIFI, H., 2004, *Frobenius Q-Groups*, Arch. Math., 83, 102-105.

[2] DORNHOFF, L., 1971, Group Representation Theory (in two parts), Part A, Ordinary Representation Theory, Marcel Dekker, Inc., New York, 0-8247-1147-5.

[3] KLETZING, D., 1984, *Structure and Representations of Q-groups*, Springer – Verlag Berlin-Heidelberg New York Tokyo, 3-540-13865-X

[4] PASSMAN D.S., 1968, Permutation Groups, New York

Temha ERKOÇ

Istanbul University, Faculty of Science, Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey, E-mail: erkoct@istanbul.edu.tr

Erhan GÜZEL

Istanbul University, Faculty of Science, Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey, E-mail: guzele@istanbul.edu.tr