2-Transitive Frobenius *Q-***Groups**

Temha ERKOÇ¹ and Erhan GÜZEL²

 Abstract. A *Q* -group is a finite group all of whose irreducible complex characters are rationally- valued. In this paper, we find all 2-transitive Frobenius *Q* -groups.

Keywords: *Q-*Groups, Frobenius Groups.

AMS Subject Classification Number: 20C15.

INTRODUCTION

We use the following notations in this paper

Notation. C the field of complex numbers ; Z the ring of rational integers ; $Gen(x)$ the set of generators of cyclic group $\langle x \rangle$; [x] the conjugacy class of x; $N_G(x)$ the normalizer of *x* in *G* ; $C_G(x)$ the centralizer of *x* in *G* ; $Aut(x)$ the group of automorphisms of $\langle x \rangle$; φ Euler's function; \times | semidirect product; Q_8 the quaternion group of order 8 ; $E(p^n)$ the elemantary abelian p-group of order p^n .

*Q-***GROUPS**

Definition. A finite group whose complex characters are rationally-valued is called a *Q* -group.

For example, all of the symmetric groups and finite elemantary abelian 2-groups are *Q* groups. Kletzing's lecture notes, [3] , presents a detailed investigation into the structure of *Q* -groups.General classification of *Q* -groups has not been able to be done up to now, but some special *Q* -groups have been classified. Frobenius *Q* -groups were classified by [1].

¹ Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey, e-mail: erkoct@istanbul.edu.tr.

 ² Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey, e-mail: guzele@istanbul.edu.tr.

Let *G* be a finite group of order *n* and let ξ be a primitive *n*-th root of unity in the field *C*. Then, all of the complex character values of *G* lie in the subring $Z[\xi]$ of *C*. Moreover, if *G* is a *Q*-group, these values lie in *Z* since $Z[\xi] \cap Q = Z$. Now, we say that a finite group is a Q -group if and only if the values of its all the irreducible complex characters lie in *Z* .

Another characterization of *Q* -groups is the following theorem.

Theorem 1. Let *G* be a finite group. Then, *G* is a *Q* -group if and only if for every *x*∈*G*, *Gen*(*x*) ⊆ [*x*] i.e. for every *x* ∈ *G*, $N_G(x)/C_G(x) \cong Aut(x)$ [3].

Now, we can easily see the following corollary.

Corrollary 2. Let *G* be a *Q* -group. Then:

1)
$$
[N_G(x): C_G(x)] = |Aut(x)| = \varphi(|x|)
$$
, for every $x \in G$.

- 2) If $G \neq \{1\}$, 2 | $|G|$.
- 3) If *N* is a normal subgroup of *G*, then G/N is a *Q*-group.

FROBENIUS GROUPS

Definition. Let *G* be a transitive and non-regular permutation group on Ω , $|\Omega| \in IN$, $\alpha \in \Omega$, $H = G_{\alpha}$. Then, *G* is called a Frobenius group with complement *H* if and only if the identity element of *G* is unique element that fixes more than one element of Ω .

Definition. A trivial intersection set in a group *G* is a subset *S* of *G* such that for all $g \in G$, either $S^g = S$ or $S^g \cap S \subset \{1\}$.

Lemma 3. Let *G* be a finite group, $\{1\} \neq H$ a proper subgroup of *G*. Then the following are equivalent:

(a) *G* is a Frobenius group with complement *H* .

(b) *H* is a trivial intersection set and $H = N_G(H)$. [2]

Now we can say that a finite group *G* is a Frobenius group if and only if it contains a proper subgroup $H \neq \{1\}$, called a Frobenius complement, such that $H \cap H^x = \{1\}$ for all $x \notin H$.

By Frobenius Theorem [2, p.63], a Frobenius group *G* with complement *H* has a normal subgroup *K*, called Frobenius kernel, such that $G = K \times |H|$. If $K = \{1 = x_1, ..., x_n\}$ where $n \in IN$, then we have $G = K \cup$ 1 $(H^{x_i}-1)$ *n x i* $G=K\cup\left| \int H\right|$ = ⎡ ⎤ $= K \cup \bigcup (H^{x_i} - \{1\})$ $\left[\begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \end{array}\right]$ $\bigcup (H^{x_i} - \{1\})$, called

Frobenius partition.

Definition. Let *G* be a group and φ be a automorphism of *G*. Then, φ is called fixed-point-free automorphism if $\varphi(g) \neq g$ for every $g \in G - \{1\}$.

Let G be a Frobenius group with kernel K and complement H . Then, for every $h \in H - \{1\}$, $k \mapsto h^{-1}k \cdot h$ is an automorphism of *K* fixing only the element $1 \in K$. Thus we can say that all elements of *H* except 1 are fixed-point-free of *K*. Moreover, a semi-direct group $G = K \times |H|$ is a Frobenius group if h is fixed-pointfree of *K* for every $h \in H - \{1\}$.

Lemma 4. Let *G* be a tranzitive permutation group on Ω , $|\Omega| \in IN - \{1\}$. Then *G* is 2-transitive if and only if $G = G_\alpha \cup G_\alpha x G_\alpha$ for all $\alpha \in \Omega$ and $x \in G - G_\alpha$ [4].

Theorem 5. Let *G* be a Frobenius group with kernel *K* and complement *H* . Then *G* is 2-transitive if and only if $|K| = |H| + 1$.

Proof. By the definition of Frobenius group, G is a tranzitive permutation group on Ω , $|\Omega| \in IN$ and there is $\alpha \in \Omega$ such that $H = G_{\alpha}$. By Lemma 4., we know that G is 2transitive if and only if $G = H \cup H xH$ for every $x \in G - H$. Therefore, if G is 2transitive, then we have

$$
|G| = |H| + |HxH| = |H| + \frac{|H| \cdot |H^x|}{|H \cap H^x|} = |H| + \frac{|H|^2}{|H \cap H^x|}
$$

for every $x \in G - H$. Since *H* is a trivial intersection set in *G* and $H = N_G(H)$ by Lemma3., we have $|H \cap H^x|=1$ for every $x \in G-H$. Thus, $|G|=|H|+|H|^2$. Also, since $|G|=|K|$. $|H|$ by Frobenius Theorem, we have $|K|$. $|H|=|G|=|H|+|H|^2$ and so $|K|=|H|+1$. Conversely, we can easily that if $|K|=|H|+1$, then *G* is 2-transitive.

Theorem 6. Let *G* be a Frobenius Q -group with kernel *K* and complement *H*. Then, *H* ≅ Z_2 or *H* ≅ Q_8 . Moreover,

1) If $H \cong Z_2$, then *K* is an elemantary abelian 3-group and for every $t \in K$,

 $t^u = t^{-1}$ where $1 \neq u \in H$.

2) If $H \cong Q_8$, then *K* is an elemantary abelian *p*-group where $p=3$ or $p = 5$. [1]

2-TRANSITIVE FROBENIUS *Q-***GROUPS**

All 2-transitive Frobenius *Q*-groups are given by the following theorem.

Theorem. Let *G* be a 2-transitive Frobenius *Q*-group. Then, $G \cong S_3$ or $G \cong E(3^2) \times | Q_8$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra $Z_3 Q_8$.

Proof. Let *G* be a 2-transitive Frobenius *Q* -group with kernel *K* and complement *H* . By Theorem 6, we know that $H \cong Z_2$ or $H \cong Q_8$.

1) If $H \cong Z$, then *K* is an elementary abelian 3-group and for every $t \in K$, $t^u = t^{-1}$ where $1 \neq u \in H$ by Theorem 6. Moreover, since *G* is 2-transitive, we have $|K|=|H|+1=3$ by Theorem 5. Therefore, $G \cong E(3) \times | Z_2 \cong S_3$. Conversely, we can see easily that S_3 is a 2-transitive Frobenius Q -group.

2) If $H \cong Q_8$, then *K* is an elementary abelian p-group where $p = 3$ or $p = 5$ by Theorem 6. Since *G* is 2-transitive, we have $|K|=|H|+1=9$ by Theorem 5. Then, *K* must be an elemantary abelian 3-group of order 9. Since $K \triangleleft G$, *H* acts on *K* by conjugation. Thus, *K* may be considered as a Z_3H -module, so *K* defines a representation of *H* over the field Z_3 . Since $3/|H|$, we can use ordinary representation theory, so *K* is a direct sum of some irreducible modules of group ring Z_3H by Maschke's Theorem and Wedderburn's Theorem. *H* has exactly five non-isomorphic irreducible module over the field Z_3 and four of them are 1dimensional so the other is 2-dimensional. Since $\chi(u) = 1 \in Z_3$ for every 1dimensional representation χ of *H* where *u* is the involusion, *K* must be the 2dimensional irreducible module of group ring Z_3H . Therefore, we have $G \cong E(3^2) \times |Q_8|$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra $Z_3 Q_8$. Conversely, let $G \cong E(3^2) \times |Q_8|$ where $E(3^2)$ is the 2-dimensional irreducible module of group algebra $Z_3 Q_8$. Then, *G* is a Frobenius group with kernel K ($\cong E(3^2)$) and complement H ($\cong Q_8$) since the involution of *H* is fixed-point-free of *K*. Moreover, since $|K| = |H| + 1$, *G* is 2-transitive by Theorem 5. Since *G* is a Frobenius group, we have Frobenius partition ⎥ ⎥ $\overline{}$ ⎤ $\mathsf I$ $\mathsf I$ ⎣ $= K \cup \left| \int (H^g -$ ∈ ن|ن
ا $(H^g - \{1\})$ $g \in K$ $G = K \cup \left[\bigcup (H^g - \{1\}) \right]$. Also, for every $g \in K$, $H^g \left(\equiv Q_8 \right)$ is a *Q*-group and

for every $1 \neq x \in K$, $x^u = x^2$ where *u* is the involusion of *H*. Thus, by the definition of Q-group, we can see easily that *G* is a *Q*-group.

REFERENCES

[1] DARAFSHEH, M.R., SHARIFI, H., 2004, *Frobenius Q-Groups,* Arch. Math., 83, 102-105.

[2] DORNHOFF, L., 1971, *Group Representation Theory (in two parts), Part A, Ordinary Representation Theory*, Marcel Dekker, Inc., New York, 0-8247-1147-5.

[3] KLETZING, D., 1984, *Structure and Representations of Q -groups,* Springer – Verlag Berlin-Heidelberg New York Tokyo, 3-540-13865-X

[4] PASSMAN D.S.,1968, *Permutation Groups* , New York

Temha ERKOÇ

Istanbul University, Faculty of Science, Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey, E-mail: erkoct@istanbul.edu.tr

Erhan GÜZEL

Istanbul University, Faculty of Science, Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey, E-mail: guzele@istanbul.edu.tr