Pairwise Semiregular Properties on Generalized Pairwise Regular-Lindelöf Spaces

Zabidin SALLEH¹ and Adem KILIÇMAN²

Abstract. Let (X, τ_1, τ_2) be a bitopological space and $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ its pairwise semiregularization. Then a bitopological property \mathcal{P} is called pairwise semiregular provided that (X, τ_1, τ_2) has the property \mathcal{P} if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ has the same property. In this paper we study pairwise semiregular properties of a bitopological space. We prove that pairwise almost regular-Lindelöfness and pairwise weakly regular-Lindelöfness are pairwise semiregular properties.

Keywords: Bitopological space, pairwise nearly regular-Lindelöf, pairwise almost regular-Lindelöf, pairwise weakly regular-Lindelöf, (i, j)-semiregular property, pairwise semiregular property.

AMS Subject Classification: 54D20, 54E55

1. INTRODUCTION

Semiregular properties in topological spaces have been studied by many topologists. Some of them related to this research studied by Mrsevic et al. [11, 12], and Fawakhreh and Kılıçman [2]. The purpose of this paper is to study pairwise semiregular properties on generalized pairwise regular-Lindelöf spaces, that we have studied in [10, 8], namely, pairwise nearly regular-Lindelöf, pairwise almost regular-Lindelöf and pairwise weakly regular-Lindelöf spaces.

The main results are that the (i, j)-almost regular-Lindelöf, pairwise almost reglar-Lindelöf, (i, j)-weakly regular-Lindelöf and pairwise weakly regular-Lindelöf spaces are pairwise semiregular properties. We also show that the (i, j)-nearly regular-Lindelöf and pairwise nearly regular-Lindelöf spaces are pairwise semiregular invariant properties.

 $^{^1}$ Department of Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, E-Mail: zabidin@umt.edu.my

² Department of Mathematics, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia, E-Mail: akilic@fsas.upm.edu.my

2. Preliminaries

Throughout this paper, all spaces (X, τ) and (X, τ_1, τ_2) (or simply X) are always mean topological spaces and bitopological spaces, respectively. If \mathcal{P} is a topological property, then (τ_i, τ_j) - \mathcal{P} denotes an analogue of this property for τ_i has property \mathcal{P} with respect to τ_j , and p- \mathcal{P} denotes the conjunction (τ_1, τ_2) - $\mathcal{P} \land (\tau_2, \tau_1)$ - \mathcal{P} , i.e., p- \mathcal{P} denotes an absolute bitopological analogue of \mathcal{P} . As we shall see below, sometimes (τ_1, τ_2) - $\mathcal{P} \iff (\tau_2, \tau_1)$ - \mathcal{P} (and thus $\iff p$ - \mathcal{P}) so that it sometimes suffices to consider one of these three bitopological analogue. Also sometimes τ_1 - $\mathcal{P} \iff \tau_2$ - \mathcal{P} and thus $\mathcal{P} \iff \tau_1$ - $\mathcal{P} \land \tau_2$ - \mathcal{P} , i.e., (X, τ_i) has property \mathcal{P} for each i = 1, 2. Also note that (X, τ_i) has a property $\mathcal{P} \iff (X, \tau_1, \tau_2)$ has a property τ_i - \mathcal{P} .

Sometimes the prefixes (τ_i, τ_j) - or τ_i - will be replaced by (i, j)- or *i*- respectively, if there is no chance for confusion. By *i*-open cover of X, we mean that the cover of X by *i*-open sets in X; similar for the (i, j)-regular open cover of X etc. By *i*-int(A) and *i*-cl(A), we shall mean the interior and the closure of a subset A of X with respect to topology τ_i , respectively. In this paper we always have $i, j \in \{1, 2\}$ and $i \neq j$. The reader may consult [1] for details of notation.

The following are some basic concepts.

Definition 2.1. Let (X, τ_1, τ_2) be a bitopological space. A subset F of X is said to be

(i) i-open if F is open with respect to τ_i in X, and F is called open in X if it is both 1-open and 2-open in X, or equivalently, $F \in (\tau_1 \cap \tau_2)$ in X;

(ii) *i*-closed if F is closed with respect τ_i in X, and F is called closed in X if it is both 1-closed and 2-closed in X, or equivalently, $X \setminus F \in (\tau_1 \cap \tau_2)$ in X.

Definition 2.2. [3, 5] A bitopological space (X, τ_1, τ_2) is said to be *i*-Lindelöf if the topological space (X, τ_i) is Lindelöf. X is called Lindelöf (or p-Lindelöf in [5]) if it is both 1-Lindelöf and 2-Lindelöf. Equivalently, (X, τ_1, τ_2) is Lindelöf if every *i*-open cover of X has a countable subcover for each i = 1, 2.

Definition 2.3. [4, 16] A subset S of a bitopological space (X, τ_1, τ_2) is said to be (i, j)regular open (resp. (i, j)-regular closed) if i-int(j-cl(S)) = S (resp. i-cl(j-int(S)) = S),
and S is called pairwise regular open (resp. pairwise regular closed) if it is both (1, 2)regular open and (2, 1)-regular open (resp. (1, 2)-regular closed and (2, 1)-regular closed).

Definition 2.4. [4, 17] A bitopological space X is said to be (i, j)-almost regular if for each $x \in X$ and for each (i, j)-regular open set V of X containing x, there is an (i, j)regular open set U such that $x \in U \subseteq j$ -cl $(U) \subseteq V$. X is said to be pairwise almost regular if it is both (1, 2)-almost regular and (2, 1)-almost regular.

Definition 2.5. [13] The topology generated by the (i, j)-regular open subsets of (X, τ_1, τ_2) is denoted by $\tau_{(i,j)}^s$ and it is called (i, j)-semiregularization of X. The bitopological space $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is called the pairwise semiregularization of (X, τ_1, τ_2) . If $\tau_i \equiv \tau_{(i,j)}^s$, then X is said to be (i, j)-semiregular. (X, τ_1, τ_2) is called pairwise semiregular if it is both (1, 2)-semiregular and (2, 1)-semiregular, that is, whenever $\tau_i \equiv \tau_{(i,j)}^s$ for each $i, j \in \{1, 2\}$ and $i \neq j$.

It is very clear that $\tau_{(i,j)}^s \subseteq \tau_i$, but it is not necessary $\tau_i \subseteq \tau_{(i,j)}^s$. For a better understanding, let \mathcal{B}_1 be the family of all (1, 2)-regular open subsets of X and let \mathcal{B}_2 be the family of all (2, 1)-regular open subsets of X. Since the intersection of two (i, j)-regular open subsets of X is (i, j)-regular open set, therefore \mathcal{B}_1 and \mathcal{B}_2 both generate topologies for (X, τ_1, τ_2) say $\tau_{(1,2)}^s$ and $\tau_{(2,1)}^s$ respectively. Thus with every given bitopological space (X, τ_1, τ_2) there is an associated bitopological space $(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s)$ in the manner described above. Note that, the space $(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s)$ is always pairwise semiregular. Singal and Arya [16], proved the following theorem.

Theorem 2.1. If (X, τ_1, τ_2) is pairwise semiregular, then $(X, \tau_1, \tau_2) = \left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. The converse of Theorem 2.1 is also true by the definitions.

Theorem 2.2. A bitopological space X is (i, j)-semiregular if and only if for each $x \in X$ and for each *i*-open subset V of X containing x, there is an *i*-open set U such that $x \in U \subseteq i$ -int(j-cl $(U)) \subseteq V$.

Proof. Let (X, τ_1, τ_2) be an (i, j)-semiregular space, then $\tau_i = \tau_{(i,j)}^s$, i.e., τ_i is generated by (i, j)-regular open sets in (X, τ_1, τ_2) . Suppose that $x \in X$ and let V be an *i*-open set in

 (X, τ_1, τ_2) containing x. Since the family of (i, j)-regular open sets in (X, τ_1, τ_2) forms a base for τ_i , there exists an *i*-open sets U in (X, τ_1, τ_2) such that $x \in U \subseteq i$ -int (j-cl $(U)) \subseteq$ V. Conversely, assume the condition holds. Generally we have $\tau_{(i,j)}^s \subseteq \tau_i$. Suppose that $p \in X$ and $F_p \in \tau_i$ with $p \in F_p$. By hypothesis, there is an *i*-open set U_p in (X, τ_1, τ_2) such that $p \in U_p \subseteq i$ -int (j-cl $(U_p)) \subseteq F_p$. Hence the family $\{i$ -int (j-cl $(U_p)) : p \in X\}$ forms a base for $\tau_{(i,j)}^s$ which implies that $F_p \in \tau_{(i,j)}^s$. Therefore $\tau_i \subseteq \tau_{(i,j)}^s$ and thus (X, τ_1, τ_2) is (i, j)-semiregular.

Corollary 2.3. A bitopological space X is pairwise semiregular if and only if for each $x \in X$ and for each *i*-open subset V of X containing x, there is an *i*-open set U such that $x \in U \subseteq i\text{-int}(j\text{-}cl(U)) \subseteq V$ for each $i, j \in \{1, 2\}, i \neq j$.

Khedr and Alshibani [4] use Theorem 2.2 as a definition of (i, j)-semiregular spaces. If a bitopological space X has a bitopological property \mathcal{P} (see [6]), one may ask whether the pairwise semiregularization of X has the property \mathcal{P} . Now we introduce the concept of pairwise semiregular property.

Definition 2.6. Let (X, τ_1, τ_2) be a bitopological space and let $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ be its pairwise semiregularization. A bitopological property \mathcal{P} is called pairwise semiregular provided that (X, τ_1, τ_2) has the property \mathcal{P} if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ has the property \mathcal{P} .

Lemma 2.4. [13] Let (X, τ_1, τ_2) be a bitopological space and let $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ its pairwise semiregularization. Then

(a) $\tau_i \operatorname{-int}(C) = \tau_{(i,j)}^s \operatorname{-int}(C)$ for every $\tau_j \operatorname{-closed}$ set C; (b) $\tau_i \operatorname{-cl}(A) = \tau_{(i,j)}^s \operatorname{-cl}(A)$ for every $A \in \tau_j$; (c) the family of (τ_i, τ_j) -regular open sets of (X, τ_1, τ_2) is the same as the family of $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular open sets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$; (d) the family of (τ_i, τ_j) -regular closed sets of (X, τ_1, τ_2) is the same as the family of $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular closed sets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$; (e) $\left(\tau_{(i,j)}^s\right)_{(i,j)}^s = \tau_{(i,j)}^s$.

3. Pairwise Semiregularization of Generalized Pairwise Regular-Lindelöf Spaces

Definition 3.1. An *i*-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of a bitopological space X is said to be (i, j)-regular cover [8, 10] if for every $\alpha \in \Delta$, there exists a nonempty (j, i)-regular closed subset C_{α} of X such that $C_{\alpha} \subseteq U_{\alpha}$ and $X = \bigcup_{\alpha \in \Delta} i\text{-int}(C_{\alpha})$. The $\{U_{\alpha} : \alpha \in \Delta\}$ is called pairwise regular cover if it is both (1, 2)-regular cover and (2, 1)-regular cover.

Definition 3.2. A bitopological space X is said to be (i, j)-nearly regular-Lindelöf (resp. (i, j)-almost regular-Lindelöf [10], (i, j)-weakly regular-Lindelöf [8]) if for every (i, j)regular cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X, there exists a countable subset $\{\alpha_n : n \in \mathbb{N}\}$ of Δ such that $X = \bigcup_{n \in \mathbb{N}} i$ -int(j-cl $(U_{\alpha_n}))$ (resp. $X = \bigcup_{n \in \mathbb{N}} j$ -cl (U_{α_n}) , X = j-cl $(\bigcup_{n \in \mathbb{N}} (U_{\alpha_n}))$). X is called pairwise nearly regular-Lindelöf (resp. pairwise almost regular-Lindelöf, pairwise weakly regular-Lindelöf) if it is both (1, 2)-nearly regular-Lindelöf (resp. (1, 2)-almost regular-Lindelöf, (1, 2)-weakly regular-Lindelöf) and (2, 1)-nearly regular-Lindelöf (resp. (2, 1)-almost regular-Lindelöf, (2, 1)-weakly regular-Lindelöf).

Suppose that $\{U_{\alpha} : \alpha \in \Delta\}$ is an (i, j)-regular cover of a bitopological space X. If for every $\alpha \in \Delta$, U_{α} is an (i, j)-regular open subset of X, then $\{U_{\alpha} : \alpha \in \Delta\}$ is called (i, j)regular cover of X by (i, j)-regular open subsets of X. By using this concept, we have the following theorem for the (i, j)-nearly regular-Lindelöf spaces

Theorem 3.1. A bitopological space X is (i, j)-nearly regular-Lindelöf if and only if every (i, j)-regular cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X by (i, j)-regular open subsets of X has a countable subcover.

Proof. Straightforward by the definitions.

Corollary 3.2. A bitopological space X is pairwise nearly regular-Lindelöf if and only if every (i, j)-regular cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X by (i, j)-regular open subsets of X has a countable subcover for each $i, j \in \{1, 2\}, i \neq j$.

The following theorem and corollary proves that (i, j)-nearly regular-Lindelöf property as well as pairwise nearly regular-Lindelöf property is pairwise semiregular invariant property. We cannot say the (i, j)-nearly regular-Lindelöf property or pairwise nearly regular-Lindelöf property is pairwise semiregular property because we do not know yet whether

the (i, j)-nearly regular-Lindelöf property and pairwise nearly regular-Lindelöf property is bitopological property or not.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is (τ_i, τ_j) -nearly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -nearly regular-Lindelöf.

Proof. Let (X, τ_1, τ_2) be a (τ_i, τ_j) -nearly regular-Lindelöf and let $\{U_\alpha : \alpha \in \Delta\}$ be a $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular cover of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ by $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular open subsets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. By Lemma 2.4(c), $\{U_\alpha : \alpha \in \Delta\}$ is also a (τ_i, τ_j) -regular cover of (X, τ_1, τ_2) by (τ_i, τ_j) regular open subsets of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is (τ_i, τ_j) -nearly regular -Lindelöf, $\{U_\alpha : \alpha \in \Delta\}$ has a countable subcover. It follows by Lemma 2.4 and Theorem 3.1, $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ - nearly regular -Lindelöf. Conversely suppose that $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ - nearly regular open subsets of (X, τ_1, τ_2) . Lemma 2.4(c) implies that $\{V_\alpha : \alpha \in \Delta\}$ is also a $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular cover of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ by $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ regular open subsets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ by $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ regular open subsets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ by $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ nearly regular cover of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ by $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ nearly regular open subsets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -nearly regular-Lindelöf, $\{V_\alpha : \alpha \in \Delta\}$ has a countable subcover. It follows by Lemma 2.4(c) and Theorem 3.1, $\left(X, \tau_1, \tau_2\right)$ is $\left(\tau_i, \tau_j\right)$ -nearly regular-Lindelöf. □

Corollary 3.4. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is pairwise nearly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is pairwise nearly regular-Lindelöf.

Proposition 3.5. Let (X, τ_1, τ_2) be a (τ_i, τ_j) -almost regular space. Then (X, τ_1, τ_2) is (τ_i, τ_j) -nearly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\tau_{(i,j)}^s$ -Lindelöf.

Proof. Let (X, τ_1, τ_2) be a (τ_i, τ_j) -nearly regular-Lindelöf and let $\{U_\alpha : \alpha \in \Delta\}$ be a $\tau_{(i,j)}^s$ -open cover of $(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s)$. For each $x \in X$, there exists $\alpha_x \in \Delta$ such that $x \in U_{\alpha_x}$ and since for each $\alpha_x \in \Delta, U_{\alpha_x} \in \tau_{(i,j)}^s$, there exists a (τ_i, τ_j) -regular open set V_{α_x} in (X, τ_1, τ_2) such that $x \in V_{\alpha_x} \subseteq U_{\alpha_x}$. Since (X, τ_1, τ_2) is (τ_i, τ_j) -almost regular, there is a (τ_i, τ_j) -regular open set C_{α_x} in (X, τ_1, τ_2) such that $x \in C_{\alpha_x} \subseteq \tau_j$ -cl $(C_{\alpha_x}) \subseteq V_{\alpha_x}$. Hence $X = \bigcup_{x \in X} C_{\alpha_x} \subseteq \bigcup_{x \in X} \tau_j$ -cl $(C_{\alpha_x}) \subseteq \bigcup_{x \in X} \tau_i$ -int $(\tau_j$ -cl $(C_{\alpha_x}))$, the family $\{V_{\alpha_x} : x \in X\}$ forms a (τ_i, τ_j) -regular cover of (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) is (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subset of X. Since (X, τ_1, τ_2) is (τ_i, τ_j) -nearly regular-Lindelöf, there exists a countable subset of points x_1, \ldots, x_n, \ldots

of X such that $X = \bigcup_{n \in \mathbb{N}} V_{\alpha_{x_n}} \subseteq \bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}$. This shows that $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\tau_{(i,j)}^s$ -Lindelöf. Conversely, let $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ be a $\tau_{(i,j)}^s$ -Lindelöf and let $\{U_\alpha : \alpha \in \Delta\}$ be a (τ_i, τ_j) -regular cover of (X, τ_1, τ_2) by (τ_i, τ_j) -regular open subsets of (X, τ_1, τ_2) . By Lemma 2.4(c), each U_α is also a $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -regular open which is also $\tau_{(i,j)}^s$ -open subsets of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\tau_{(i,j)}^s$ -Lindelöf, $\{U_\alpha : \alpha \in \Delta\}$ has a countable subcover. It follows by Lemma 2.4(c) and Theorem 3.1 that (X, τ_1, τ_2) is (τ_i, τ_j) -nearly regular-Lindelöf.

Corollary 3.6. Let (X, τ_1, τ_2) be a pairwise almost regular space. Then (X, τ_1, τ_2) is pairwise nearly regular-Lindelöf if and only if $(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s)$ is Lindelöf.

Theorem 3.7. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is (τ_i, τ_j) -almost regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -almost regular-Lindelöf.

Proof. The proof is similar to the proof of Theorem 3.3, thus we choose to omit the details. $\hfill \square$

Corollary 3.8. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is pairwise almost regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is pairwise almost regular-Lindelöf.

Note that, the (i, j)-almost regular-Lindelöf property and the pairwise almost regular-Lindelöf property are bitopological properties (see [14, 15]). Utilizing this fact, Theorem 3.7 and Corollary 3.8, we easily obtain the following corollary.

Corollary 3.9. The (i, j)-almost regular-Lindelöf property and the pairwise almost regular-Lindelöf property are pairwise semiregular properties.

Theorem 3.10. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is (τ_i, τ_j) -weakly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -weakly regular-Lindelöf.

Proof. The proof is quite similar to the proof of Theorem 3.3 by using the fact that

$$\tau_{(j,i)}^{s} \operatorname{-cl}\left(\bigcup_{n\in\mathbb{N}}\tau_{i}\operatorname{-int}\left(\tau_{j}\operatorname{-cl}\left(V_{\alpha_{n}}\right)\right)\right) = \tau_{j}\operatorname{-cl}\left(\bigcup_{n\in\mathbb{N}}\tau_{i}\operatorname{-int}\left(\tau_{j}\operatorname{-cl}\left(V_{\alpha_{n}}\right)\right)\right)$$
$$\subseteq \tau_{j}\operatorname{-cl}\left(\bigcup_{n\in\mathbb{N}}\tau_{j}\operatorname{-cl}\left(V_{\alpha_{n}}\right)\right)$$
$$\subseteq \tau_{j}\operatorname{-cl}\left(\bigcup_{n\in\mathbb{N}}V_{\alpha_{n}}\right).$$

Thus we choose to omit the details.

Corollary 3.11. Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is pairwise weakly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is pairwise weakly regular-Lindelöf.

Note that, the (i, j)-weakly regular-Lindelöf property and the pairwise weakly regular-Lindelöf property are bitopological properties (see [14, 15]). Utilizing this fact, Theorem 3.10 and Corollary 3.11, we easily obtain the following corollary.

Corollary 3.12. The (i, j)-weakly regular-Lindelöf property and the pairwise weakly regular-Lindelöf property are pairwise semiregular properties.

Definition 3.3. A bitopological space X is said to be (i, j)-almost Lindelöf [7] (resp. (i, j)weakly Lindelöf [9]) if for every i-open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X, there exists a countable subset $\{\alpha_n : n \in \mathbb{N}\}$ of Δ such that

$$X = \bigcup_{n \in \mathbb{N}} j \cdot cl(U_{\alpha_n}) \ \left(resp. \ X = j \cdot cl\left(\bigcup_{n \in \mathbb{N}} (U_{\alpha_n})\right) \right).$$

X is called pairwise almost Lindelöf (resp. pairwise weakly Lindelöf) if it is both (1,2)almost Lindelöf and (2,1)-almost Lindelöf (resp. (1,2)-weakly Lindelöf and (2,1)-weakly Lindelöf).

Proposition 3.13. Let (X, τ_1, τ_2) be a (τ_i, τ_j) -almost regular space. Then: (i) (X, τ_1, τ_2) is (τ_i, τ_j) -almost regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -almost Lindelöf. (ii) (X, τ_1, τ_2) is (τ_i, τ_j) -weakly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is $\left(\tau_{(i,j)}^s, \tau_{(j,i)}^s\right)$ -weakly Lindelöf.

Proof. The proof of each part is quite similar. We choose to prove only part (i). Let (X, τ_1, τ_2) be a (τ_i, τ_j) -almost regular-Lindelöf and let $\{U_\alpha : \alpha \in \Delta\}$ be a $\tau_{(i,j)}^s$ -open cover of $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$. Since $\tau_{(i,j)}^s \subseteq \tau_i$, $\{U_\alpha : \alpha \in \Delta\}$ is a τ_i -open cover of the (τ_i, τ_j) -almost regular-Lindelöf space (X, τ_1, τ_2) . For each $x \in X$, there exists $\alpha_x \in \Delta$ such that $x \in U_{\alpha_x}$ and since for each $\alpha_x \in \Delta, U_{\alpha_x} \in \tau_{(i,j)}^s$, there exists a (τ_i, τ_j) -regular open set V_{α_x} in (X, τ_1, τ_2) such that $x \in V_{\alpha_x} \subseteq U_{\alpha_x}$. Since (X, τ_1, τ_2) is (τ_i, τ_j) -almost regular, there is a (τ_i, τ_j) -regular open set C_{α_x} in (X, τ_1, τ_2) such that $x \in \Delta$, there exists a (τ_j, τ_i) -regular closed set τ_j -cl $(C_{\alpha_x}) \subseteq V_{\alpha_x}$. Since for each $\alpha_x \in \Delta$, there exists a (τ_j, τ_i) -regular closed set τ_j -cl (C_{α_x}) in (X, τ_1, τ_2) such that τ_j -cl $(C_{\alpha_x}) \subseteq V_{\alpha_x}$ and $X = \bigcup_{x \in X} C_{\alpha_x} = \bigcup_{x \in X} \tau_i$ -int $(\tau_j$ -cl $(C_{\alpha_x}))$, the family $\{V_{\alpha_x} : x \in X\}$ is a (τ_i, τ_j) -regular cover of (X, τ_1, τ_2) . Hence there exists a countable subset of points x_1, \ldots, x_n, \ldots of X such that $X = \bigcup_{n \in \mathbb{N}} \tau_j$ -cl $(V_{\alpha_{x_n}})$. By Lemma 2.4(b),

 $X = \bigcup_{n \in \mathbb{N}} \tau_{(j,i)}^{s} \operatorname{-cl} \left(V_{\alpha_{x_n}} \right) \subseteq \bigcup_{n \in \mathbb{N}} \tau_{(j,i)}^{s} \operatorname{-cl} \left(U_{\alpha_{x_n}} \right). \text{ This shows that } \left(X, \tau_{(1,2)}^{s}, \tau_{(2,1)}^{s} \right) \text{ is } \left(\tau_{(i,j)}^{s}, \tau_{(j,i)}^{s} \right) \operatorname{-almost Lindelöf. Conversely, let } \left(X, \tau_{(1,2)}^{s}, \tau_{(2,1)}^{s} \right) \text{ be a } \left(\tau_{(i,j)}^{s}, \tau_{(j,i)}^{s} \right) \operatorname{-almost Lindelöf and let } \left\{ U_{\alpha} : \alpha \in \Delta \right\} \text{ be a } (\tau_{i}, \tau_{j}) \operatorname{-regular cover of } (X, \tau_{1}, \tau_{2}). \text{ Since } U_{\alpha} \subseteq \tau_{i} \operatorname{-int} (\tau_{j} \operatorname{-cl} (U_{\alpha})) \text{ and } \tau_{i} \operatorname{-int} (\tau_{j} \operatorname{-cl} (U_{\alpha})) \in \tau_{(i,j)}^{s}, \{\tau_{i} \operatorname{-int} (\tau_{j} \operatorname{-cl} (U_{\alpha})) : \alpha \in \Delta \} \text{ is } \tau_{(i,j)}^{s} \operatorname{-open cover } \text{ of the } \left(\tau_{(i,j)}^{s}, \tau_{(j,i)}^{s} \right) \operatorname{-almost Lindelöf space } \left(X, \tau_{(1,2)}^{s}, \tau_{(2,1)}^{s} \right). \text{ Then there exists a countable } \text{ subset } \{\alpha_{n} : n \in \mathbb{N}\} \text{ of } \Delta \text{ such that } X = \bigcup_{n \in \mathbb{N}} \tau_{(j,i)}^{s} \operatorname{-cl} (\tau_{i} \operatorname{-int} (\tau_{j} \operatorname{-cl} (U_{\alpha_{n}}))). \text{ By Lemma } 2.4(\text{b}), \text{ we have } X = \bigcup_{n \in \mathbb{N}} \tau_{j} \operatorname{-cl} (\tau_{i} \operatorname{-int} (\tau_{j} \operatorname{-cl} (U_{\alpha_{n}}))) \subseteq \bigcup_{n \in \mathbb{N}} \tau_{j} \operatorname{-cl} (U_{\alpha_{n}}). \text{ This implies that } (X, \tau_{1}, \tau_{2}) \text{ is } (\tau_{i}, \tau_{j}) \operatorname{-almost regular-Lindelöf.} \square$

Corollary 3.14. Let (X, τ_1, τ_2) be a pairwise almost regular space. Then:

(i) (X, τ_1, τ_2) is pairwise almost regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is pairwise almost Lindelöf.

(ii) (X, τ_1, τ_2) is pairwise weakly regular-Lindelöf if and only if $\left(X, \tau_{(1,2)}^s, \tau_{(2,1)}^s\right)$ is pairwise weakly Lindelöf.

References

- B. P. Dvalishvili, Bitopological Spaces: Theory, relations with generalized algebraic structures, and applications, North-Holland Math. Stud. 199, Elsevier, 2005.
- [2] A. J. Fawakhreh and A. Kılıçman, Semiregular properties and generalized Lindelöf spaces, *Mat. Vesnik* 56 (2004), 77-80.
- [3] Ali A. Fora and Hasan Z. Hdeib, On pairwise Lindelöf spaces, Rev. Colombiana Mat. 17 (1983) no. 1-2, 37-57.
- [4] F. H. Khedr and A. M. Alshibani, On pairwise super continuous mappings in bitopological spaces, Int. J. Math. & Math. Sci., 14 (4) (1991), 715-722.
- [5] A. Kılıçman and Z. Salleh, On pairwise Lindelöf bitopological spaces, *Topology Appl.* 154 (8) (2007), 1600-1607.
- [6] A. Kılıçman and Z. Salleh, Mappings and pairwise continuity on pairwise Lindelöf bitopological spaces, Albanian J. Math., 1(2) (2007), 115-120.
- [7] A. Kılıçman and Z. Salleh, Pairwise almost Lindelöf bitopological spaces II, Malaysian Journal of Mathematical Sciences, 1(2) (2007), 227-238.
- [8] A. Kılıçman and Z. Salleh, Pairwise weakly regular-Lindelöf spaces, Abstr. Appl. Anal., Volume 2008, Article ID 184243, 13 pages, doi:10.1155/2008/184243.
- [9] A. Kılıçman and Z. Salleh, On the pairwise weakly Lindelöf bitopological spaces, arXiv:0901.4405v1 [math.GN], 28 Jan 2009, 14 pages.
- [10] A. Kılıçman and Z. Salleh, Pairwise almost regular-Lindelöf spaces, Sci. Math. Jpn. 70 (2009), 285-298.
- [11] M. Mršević, I. L. Reilly and M. K. Vamanamurthy, On semi-regularization topologies, J. Austral. Math. Soc. (Ser. A) 38 (1985), 40-54.
- [12] M. Mršević, I. L. Reilly and M. K. Vamanamurthy, On nearly Lindelöf spaces, Glasnik Math., 21 (41) (1986), 407-414.
- [13] Z. Salleh and A. Kılıçman, Pairwise semiregular properties and generalized pairwise Lindelöf spaces, Proceedings of the 3rd IMT-GT Regional Conference on Mathematics, Statistics and Their Applications, Universiti Sains Malaysia, The Gurney Hotel, Penang, Dec. 4-5, 2007, 106-113. ISBN: 978-983-3986-25-5.

- [14] Z. Salleh, Generalizations of Lindelöf properties in bitopological spaces, PhD Thesis, Universiti Putra Malaysia (2008).
- [15] Z. Salleh and A. Kılıçman, Mappings on generalizations of pairwise regular-Lindelöf spaces, (Submitted).
- [16] A. R. Singal and S. P. Arya, On pairwise almost regular spaces, *Glasnik Math.*, 6(26) (1971), 335-343.
- [17] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Son. Sci. Bruxelles., 84 (1970), 207-230.

Zabidin SALLEH

Department of Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, E-Mail: zabidin@umt.edu.my

Adem KILIÇMAN

Department of Mathematics, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia, E-Mail: akilic@fsas.upm.edu.my