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Abstract. This paper deals with the Dirichlet problem for convex differential (PC) inclusions of ellip-
tic type. On the basis of Legendre-Fenchel transforms the dual problems are constructed. Using the  
new concepts of locally adjoint mappings in the form of Euler-Lagrange type inclusion is established 
extremal relations for primary and dual problems. Then duality problems are formulated  for convex 
problems and duality theorems are proved. The results obtained are generalized to the multidimen-
sional case with a second order elliptic operator. 
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1. Introduction 

 
The present paper is devoted to an optimal control problems described by so-called dis-
crete and differential inclusions of elliptic type. A lot of problems in economic dynam-
ics, as well as classical problems on optimal control in vibrations, chemical engineering, 
heat, diffusion processes, differential games, and so on, can be reduced to such investi-
gations with ordinary and partial differential inclusions [1-15]. We refer the reader to 
the survey papers [11],[16-20]. The present paper is organized as follows. 
 
    In Section 2 first are given some suitable definitions, supplementary notions and re-
sults considered by author in [18-19]. Then a certain extremal Dirichlet’s problem is 
formulated for so-called elliptic differential (PC) inclusions with Laplace’s operator and 
with second order elliptic operator in the multidimensional case. In the reviewed results 
for optimality the arisen adjoint inclusions using the locally adjoint multivalued (LAM) 
functions are stated in the Euler-Lagrange form [9,18,19]. It turn out that such form of 
optimality conditions automatically implies the Weierstrass-Pontryagin maximum con-
dition. Apparently it happens because the LAM is more applicable apparat in different 
type of problems governed by differential inclusions[16-20].     
 
       In section 3 the main problem  is to formulate and study the dual problems to the 
stated problems with convex structures. Convexity is a crucial marker in classifying 
optimization problems, and it’s often accompanied by interesting phenomena of duality. 
It is well known that duality theory by virtue of its applications is one of the central di-



  

rections in convex optimality problems. In mathematical economics duality theory is 
interpreted in the form of prices, in mechanics the potential energy and complementary 
energy are in a mutually dual relation, the displacement field and the stress field are 
solutions of the direct and the dual problems, respectively. 
 
     To establish the dual problem we use the duality theorems of operations of addition 
and infimal convolution of convex functions. Here a remarkable specific feature of 
second order elliptic partial differential inclusions in comparisons with ordinary ones is 
that they admit valuable results in the case of multidimensional domain. Our approach 
to establish duality theory for continuous problem is based on the passage to the formal 
limit from duality problem in approximating problem. But to avoid difficult and fati-
guing calculations we omit it and announce only dual problem constructed for conti-
nuous problems (PC) and then (PM). Consequently construction of duality problem in 
our paper is an unforeseen part of the “iceberg”. Further it is shown that direct and dual-
ity problems are connected to each other by the duality relations. The proved duality 
theorems allow one to conclude that a sufficient condition for an extremum is an ex-
tremal relation for the primary and dual problems. It means that if some pair of feasible 
solutions *( (.), (.))u u satisfy this relation, then u(.) and *(.)u are  solutions of the primary 
and dual problem, respectively. We note that a considerable part of the investigations of 
Ekeland and Temam [7] for simple variational problem is devoted to such problems. 
Besides there are similar results for ordinary differential inclusions in [17-19]. Some 
duality relations and optimality conditions for an extremum of different control prob-
lems with partial differential inclusions can be found in [18-19]. At the end of Section 3 
we consider a linear optimal control problem of elliptic type. 
 
      Furthermore observe that in elliptic differential inclusions for simplicity of the ex-
pozition the solution is taken in the space of classical solutions. Apparently  by passing  
to  more  general  function  spaces  of generalized   solutions the most  natural  approach  
for elliptic  differential  inclusions is the use of  single-valued selections  of  a  multi-
valued  mapping[1,3,8,9].  
 
2. Necessary concepts and problems statements 
 
Throughout this section and the next sections we use special notation conventional in 

the [18-19]. Let nR  be the n-dimensional Euclidian space, 1 2( , )u u  is a pair of elements 

nRuu ∈21  , and >< 21 ,uu  is their inner product. A multivalued mapping : 2
nn RF R →  

is convex if its graph  {( , ) :  ( )}F u v v F ugph = ∈  is a convex subset of 2nR . It is convex-



  

valued if )(uF  is a convex set for each })( :{ ∅≠=∈ uFuFdomu .Let us introduce the 
notations: 

* * * * * *( , ) sup{ , : ( )}, ( , ) { ( ) : , ( , )}, n

v
M u v v v v F u F u v v F u v v M u v v R= < > ∈ = ∈ < >= ∈

For convex F we let ∅=−∞= )( if  ),( * uFvuM . Obviously the function M and the sets 
*( , )F u v  can be interpreted as Hamiltonian function and argmaximum sets, respectively.  

 
DEFINITION 2.1. For a convex mapping F  a multivalued mapping from nR  into nR  

defined by * * * * * *
 ( , ( , )) { :  ( , ) ( , )}gph FF v u v u u v K u v= − ∈ is called the locally adjoint 

mapping (LAM) to F at the point , ),( Fgphvu ∈ where ),(*
 vuK Fgph  is the dual to the 

basic cone ),( vuK Fgph . We refer to [1,6,8,9] for various definitions in this direction.  

It is clear that for a convex F the Hamiltonian is concave on u and convex on *v func-
tion. Let us denote 
                       } )( :,,inf{),( **** Fgphu,vvvuuvuH ∈><−><= . 
It is clear that by the Legendre-Fenchel transform or the conjugacy correspondence of 
convex analysis [4],[6]-[9]: 
                        { }* * * * * * *( , ) inf , ( , ) ( (., )) ( ).H u v u u M u v M v u= < > − = − − −  

 
CORALLARY 2.1. The inclusion )),(,( *** vuvFu ∈  and equality 

),(,),( **** vuMuuvuH −>=<  are  equivalent. 
 
THEOREM 2.1     Assume  that  a  continuous  function    g  is  convex   with  respect   
to  u ,  and  (., )F x   is  a  convex  mapping  for  all  fixed  x .  Then  for  the  optimality  
of  the   solution  ( )u x�   among   all   feasible  solutions  in  convex  problem )( CP   it  is    

sufficient  that  there   exist  a  classical  solution  *( )u x    such  that  the following  con-
dition: 

(a)         * * *( ) ( ( ), ( ( ), ( )), ) ( ( ), )u x F u x u x u x x g u x xΔ ∈ Δ −∂� � �  , *( ) 0u x = , x B∈ ,             

(b)       *( ) ( ( ), ( ), )u x F u x u x xΔ ∈� � , 1 2( , )x x x R= ∈ .   

     For a problem   )( ΜP  the Euler-Lagrange type inclusion (a) and argmaximum con-
dition (b)consist of the following conditions, respectively:  
 (i)               * * * *( ) ( ( ), ( ( ), ( )), ) ( ( ), )L u x F u x u x Lu x x g u x x∈ −∂� � � ,                                                             

 (ii)              *( ) ( ( ), ( ), )Lu x F u x u x x∈� �  ,  *( ) 0u x = ,  Sx∈  



  

 where  *L   is  the  operator  adjoint  to  L .  
       In section 3 we study the following problem for elliptic differential inclusion with 
homogeneous boundary value conditions: 
                                minimize    ∫∫=

R

dxxxuguJ )),((:(.))( ,                                                     

                       subject to      RxxxuFxu ∈∈Δ     ,  )),(()( ,                                            (1) 
                              and         ( ) 0,       u x x B= ∈                                                             (2) 

    where Δ  is a Laplace’s operator,
nRnRxF 2:)(., →  multivalued mapping for all 

),( 21 xxx =  in the bounded region 11 RRR ×⊂ , a closed piecewise-smooth simple curve 

B  is its boundary, 1: RRRg n →×  is a continuous convex function on u and  

21dxdxdx = . We label this continuous problem )( CP  and call it Dirichlet problem for 
elliptic differential inclusions.  The problem is to find a solution )(~ xu  of the boundary 
value problem (1), (2) that minimizes the cost functional (.)).(uJ  Here, a feasible solu-
tion is understood to be a classical solution for simplicity of the exposition. 
  
      The subject of the research in Section 6 in the following multidimensional optimal 
control problem )( MP  for elliptic differential inclusions: 

                                  minimize  ∫=
G

dxxxuguJ )),((:(.))( ,                           

                       subject to    )),(())( xxuFxLu ∈  ,     Gx∈ ,                                           (3) 
                                and       ,0)( =xu       Sx∈                                                            (4) 

where 
1

2:)(., 1 RRxF →  is a convex closed multivalued mapping for all n -dimensional 

vectors ),...,( 1 nxxx =  in the bounded set nRG ⊂ , a closed piecewise-smooth surface S  

is its boundary, 11: RGRg →×  is a continuous and convex on u  function, 

ndxdxdxdx ...21= . L  is a second-order elliptic operator: 

∑ ∑
= =
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,)()()(:   )()( 1 GCxaij ∈ , )()( 1 GCxbi ∈ , 

)()( GCxc ∈  

where )(xaij  is a positively definite matrix, )(~ xu  and )(1 GC  are the spaces of conti-

nuous functions and functions having a continuous derivative in G , respectively. 
A function )(xu in ),()(2 GCGC ∩ that satisfies the inclusion (3)in G and the boundary 

condition (4) on S we call a classical solution of the problem posed, where )(2 GC is the 



  

space of functions )(xu having continuous all second-order derivatives. It is required to 
find a classical solution )(~ xu of the boundary value problem )( MP that minimizes the 
cost functional J(u(.)). 
 
3. On duality in elliptic differential inclusions 
 
According to the definition in  [4,8,9,18,19] 
 Let  us  denote                                         

* *
*( ( ), ( ))J u x z x : * * * * *[ ( ( ) ( ), ( ), ) ( ( ), )]

R

H u x z x u x x g z x x dx= Δ + −∫∫  

where  H is a Hamiltonian  function and * *( , )g z x  is conjugate function to func-

tion ( , )g x⋅ for every fixed  11 RRx ×∈ .Then  the  problem  of  determining  the  maxi-

mum   

      ( )DP                      
* *

*

* *
*

( ), ( ), ,
( ) 0,

( ( ), ( )),
u x z x x R
u x x B

maximize J u x z x
∈

= ∈

                     

 is  called  the  dual  problem  to  the primary convex  problem  )( CP . It  is  assumed  

that * 2 *( ) ( ) ( ),   ( ) ( )u x C R C R z x C R∈ ∩ ∈ . 
 
THEOREM 3.1    Assume that    ( ),u x x R∈   is  an  arbitrarily   feasible  solution  of  the 

primary  problem  ( )CP   and    * *{ ( ), ( )}u x z x   is  a  feasible  solution  of  the  dual 

problem    ( )DP  .   Then  the  inequality *
*( ( )) ( ( ))J u x J u x≥  is  valid. 

Proof .  It  is  clear  from  the  definitions   of  the  functions  H   and  *g   that  the  fol-
lowing  inequalities  hold : 

        * * *( ( ) ( ), ( ), )H u x z x u x xΔ +  * * *( ) ( ), ( ) ( ), ( )u x z x u x u x u x≤ < Δ + > − < Δ >  , 

          * * *( ( ), )  ( ), ( ) ( ( ), )g z x x z x u x g u x x≥ < > −  
Therefore; 

                             * * * * *( ( ) ( ), ( ), ) ( ( ), )H u x z x u x x g z x xΔ + −                                        (5) 

                             * *( ), ( ) ( ), ( ) ( ( ), )u x u x u x u x g u x x≤< Δ > − < Δ > + . 



  

 Then since *( ) 0, ( ) 0,u x u x x B= = ∈ , by  the familiar Green theorem[21]  we  have                  
* *[ ( ), ( ) ( ), ( ) ]

R

u x u x u x u x dx< Δ > − < Δ >∫∫
*

*( ) ( )[ , ( ) ( ), ] 0
B

u x u xu x u x ds
n n

∂ ∂
= < > − < > =

∂ ∂∫  (6)                           

where  n   is   outher   normal  for  a  curve  B.  Then  integrating  both  sides  of  the  
inequality  (5)  due  to  (6)  we  obtain the required  inequality. 
 

THEOREM 3.2   If  the feasible  solutions  ( )u x�   and  * *{ ( ), ( )}u x z x  ,  
*( ) ( ( ), )z x g u x x∈∂ �   satisfy  the  conditions  of  Theorem 2.1 ,  then  they  are optimal 

solutions  of  the primary  )( CP   and  dual  ( )DP    problems ,  respectively ,  and  their   
values are  equal . 
Proof. To proceed, first note that by Theorem 2.1  ( )u x�   is a solution of the primary 

problem )( CP . We need to prove that the pair * *{ ( ), ( )}u x z x  is a solution to problem 

( )DP . By  Definition 2.1  of  a LAM,  the  condition  (a)  of  the  Theorem 2.1   is  

equivalent   to  the  inequality  * * *( ) ( ), ( ) ( ), ( )u x z x u u x u x v u x< Δ + − > − < −Δ >� � 0≥  ,   
( , ) ( , , )u v gphF x∈ ⋅ ⋅ . 
 
   The latter yields    

                         * * *( ( ) ( ), ( )) ( , , )u x z x u x domH xΔ + ∈ ⋅ ⋅                                                   (7) 

where     ( , , ) :domH x⋅ ⋅  * * * *{( , ) : ( , , ) }u v H u v x= > −∞ . Further ,  since [4,6,8,9]  

),(),( * xdomgxug ⋅⊂∂  it  is  clear   that  

                                   ),()( ** xdomgxz ⋅∈   .                                                                  (8) 
Consequently ,  it can  be  concluded  from  (7.3) , (7.4)  that  the  indicated  pair  of  

functions  * *{ ( ), ( )}u x z x   is a  feasible  solutions, i.e. the set of feasible solutions to 

( )DP  is nonempty. Let us now justify the optimality of the solution * *{ ( ), ( )}u x z x to 

problem ( )DP .By the Corollary 2.1 
* * * * * * *( , ( , ), ) { : ( , , ) , ( , , )}F v u v x u H u v x u u M u v x= =< > − .Using  this  formula  and  the  

condition  (a)  of  the  Theorem 5.1  we  get 

            * * *( ( ) ( ), ( ), )H u x z x u x xΔ + * * *( ), ( ) ( ) ( ( ), ( ), )u x u x z x M u x u x x=< Δ + > −� � . 



  

Now based on the condition (c) of Theorem 2.1 we have the following equality 
* *( ), ( ) ( ( ), ( ), )u x u x M u x u x x< Δ >=� � . Thus          

                          

        * * *( ( ) ( ), ( ), )H u x z x u x xΔ +  * * *( ), ( ) ( ) ( ), ( )u x u x z x u x u x=< Δ + > − < Δ >� �  .         (9)       
            

 On  the  other  hand  the  inclusion   *( ) ( ( ), )z x g u x x∈∂ �     is  equivalent    with  the   
equality   

                            * * *( ( ), ) ( ), ( ) ( ( ), )g z x x u x z x g u x x=< > −� � .                                       (10) 
 
Then  in  view   of  (8)-(10)  as in  the  proof  of   Theorem  7.1  it  is  not  hard  to  

show  that  * *
*( ( )) ( ( ), ( ))J u x J u x z x=� . This completes the  proof of the theorem.    

 Now   let  us formulate   the  dual  problem  to  the  convex   problem  )( ΜP    with  
homogeneous    boundary  conditions .  In  this  case  the  duality  problem  consists  in  
the  following 
 

        ( )MDP                     
* *

*

* *
*

( ), ( ), ,
( ) 0,

( ( ), ( )),
u x z x x G
u x x S

maximize J u x z x
∈

= ∈

                                 

 

Here       * * * * * * * *
*( ( ), ( )) [ ( ( ) ( ), ( ), ) ( ( ), )]

G

J u x z x H L u x z x u x x g z x x dx= + −∫  , 

                     * 2( ) ( ) ( )u x C G C G∈ ∩  ,   *( ) ( )z x C G∈  ,   1( , , )nx x x= … .   
 
Now by replacing the Laplace operator Δwith the second order elliptic operator L and 
using  the  idea  suggested  in  the  proofs  of  Theorems  3.1  and  3.2   it  is   easy  to  
get  the  following   theorem. 
 

THEOREM 3.3     If  ( )u x�    and pair of  functions  * *{ ( ), ( )}u x z x ,   are  feasible  solu-
tions  to  the primary convex   problem   )( ΜP    with  homogeneous    boundary     value  

conditions   and   dual   problem ( )MDP ,  respectively,  then * *
*( ( )) ( ( ), ( ))J u x J u x z x≥� .                     

In addition, if the assertions  (i) ,  (ii)   for sufficiency of optimality  are valid  here and                     
*( ) ( ( ), )z x g u x x∈∂ �    then the values of the cost functionals are equal and  

* *{ ( ), ( )}u x z x     is  ( )MDP   solution  of  the  dual  problem . 
 



  

   Let  us  consider  the following  example: 
 
  ( )LDP               minimize ( ( )) ( ( ), )

R

J u x g u x x dx= ∫∫ ,   

                       subject to    ( ) ( ) ( )u x Au x Bw xΔ = + ,  ( )w x V∈    

where  A   is  n n×   matrix ,   B   is  a  rectangular   n r×   matrix,  rV R⊂   is  a  closed  
convex  set  and  g   is  continuously differentiable    function  on u. It   is required   to  
find  a  controlling  parameter  ( )w x V∈   such  that  the  feasible   solution  correspond-
ing  to  it  minimizes  ( ( ))J u ⋅ . 
 
      Let us introduce  a  convex  mapping  ( )F u Au BV= + . By  elementary  calcula-
tions,  it  can  be shown, that 

 
 
 
 

where            * * * *( ) sup , .V
w V

M B w w B w
∈

= < >  

 
Then obviously the duality problem for primary problem ( )LDP   has a form: 

                              maximize  * *
* ( ( ), ( )),J u x z x  

                                  * * * *( ) ( ) ( ), ,u x z x A u x x RΔ + = ∈  

                                   *( ) 0,u x x B= ∈  

where       * * * * * *
* ( ( ), ( )) [ ( ( ) ( ( ), )] .V

R

J u x z x M B u x g z x x dx= − +∫∫  
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