A Unified Theory for S-Continuity of Multifunctions

Valeriu POPA and Takashi NOIRI

Abstract

In this paper we introduce upper/lower s-m-continuous multifunctions as multifunctions defined on a set satisfying some minimal conditions. We obtain some characterizations and several properties of such multifunctions unifying some results established in [8], [9], [12], [20], [22] and [23].

Key words: *m*-structure, *s*-*m*-continuous, multifunction. AMS(2000) Math. Subject Classification: 54C08, 54C60.

1 Introduction

Semi-open sets, preopen sets, α -open sets, δ -open sets and β -open sets play an important role in the research of generalizations of continuity in topological spaces. By using these sets many authors introduced and investigated various types of non-continuous functions and multifunctions. In 1978, Kohli [9] defined a function $f: X \to Y$ to be s-continuous if for each point $x \in X$ and each open set V of Y containing f(x) and having connected complement, there exists an open set U of X containing x such that $f(U) \subset V$. In 1989, Lipski [12] extended this notion in the setting of multifunctions. By replacing an open set of X with semi-open (resp. preopen, β -open) sets, Ewert and Lipski [8] (resp. Popa and Noiri [22], [23]) defined and investigated upper/lower s-quasi-continuous (resp. upper/lower s-precontinuous, upper/lower s- β -continuous) multifunctions. The analogy among their definitions and results suggests the need of formulating a unified theory of these multifunctions.

In this paper, we introduce upper/lower s-m-continuous multifunctions as multifunctions defined on a set satisfying some minimal conditions. We obtain some characterizations and several properties of such multifunctions

unifying some results established in [8], [9], [12], [20], [22] and [23]. In the last section, we recall some types of modifications of open sets and point out the possibility for new forms of s-continuous multifunctions.

2 Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be β -open [1] orsemi-preopen [3] (resp. semi-open [11], α -open [17], preopen [14]) if $A \subset Cl(Int(Cl(A)))$ (resp. $A \subset Cl(Int(A))$, $A \subset Int(Cl(Int(A)))$, $A \subset Int(Cl(A))$). The family of all semi-preopen (resp. preopen, semi-open) sets in X is denoted by SPO(X) (resp. PO(X), SO(X)). The complement of a semi-preopen or β -open (resp. semi-open, α -open, preopen) set is said to be semi-preclosed [3] or β -closed [2] (resp. semi-closed [5], α -closed [15], preclosed [7]). The intersection of all semipreclosed sets of X containing A is called the semi-preclosure [3] or β -closure [2] of A and is denoted by spCl(A) or β Cl(A). Similarly, sCl(A), pCl(A) and α Cl(A) are defined. The union of all semi-preopen sets of X contained in A is called the semi-preinterior or β -interior of A and is denoted by spInt(A) or β Int(A). Similarly, slnt(A), plnt(A) and α Int(A) are defined.

Throughout this paper, spaces X and Y always mean topological spaces and $F: X \to Y$ (resp. $f: X \to Y$) presents a multivalued (resp. single valued) function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a subset B of a space Y by $F^+(B)$ and $F^-(B)$, respectively, that is,

$$I^{-}(B) = \{x \in X : F(x) \subset B\}$$
 and $F^{-}(B) = \{x \in X : F(x) \cap B \neq \emptyset\}.$

Definition 2.1 A multifunction $F: X \to Y$ is said to be

(1) upper s-continuous [12] (resp. upper s-quasi-continuous [8], upper s-precontinuous [22], upper s- β -continuous [23]) at a point $x \in X$ if for each open set V containing F(x) and having connected complement, there exists an open (resp. semi-open, preopen, β -open) set $U \subset X$ containing x such that $F(U) \subset V$,

(2) lower s-continuous [12] (resp. lower s-quasi-continuous [8], lower s-precontinuous [22], lower s- β -continuous [23]) at a point $x \in X$ if for each open set V of Y meeting F(x) and having connected complement, there exists an open (resp. semi-open, preopen, β -open) set $U \subset X$ containing x

such that $F(u) \cap V \neq \emptyset$ for each $u \in U$,

(3) upper (lower) s-continuous (resp. upper (lower) s-quasi-continuous. upper (lower) s-precontinuous, upper (lower) s- β -continuous) in X if it has this property at every point of X.

3 s-m-continuous multifunctions

Definition **3.1** A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m-structure*) on X if $\emptyset \in m_X$ and $X \in m_X$. Each member of m_X is said to be m_X -open and the complement of a m_X -open set is said to be m_X -closed.

Remark 3.1 Let (X, τ) be a topological space. Then the families τ , SO(X), PO(X), $\alpha(X)$, SPO(X) are all *m*-structures on X.

Definition 3.2 Let X be a nonempty set and m_X a m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [13] as follows:

(1) m_X -Cl(A) = \cap { $F: A \subset F, X - F \in m_X$ },

(2) m_X -Int $(A) = \cup \{U : U \subset A, U \in m_X\}.$

Remark 3.2 Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, SPO(X)), then we have

(1) m_X -Cl(A) = Cl(A) (resp. sCl(A), pCl(A), α Cl(A), spCl(A)),

(2) m_X -lnt(A) = Int(A) (resp. slnt(A), pInt(A), α lnt(A), spInt(A)).

Lemma 3.1 (Maki [13]). Let X be a nonempty set and m_X a m-structure on X. For subsets A and B of X, the following hold:

(1) m_X -Cl $(X-A) = X - (m_X$ -Int(A)) and m_X -Int $(X-A) = X - (m_X - Cl(A))$,

(2) If $(X - A) \in m_X$, then m_X -Cl(A) = A and if $A \in m_X$, then m_X -Int(A) = A,

(3) m_X -Cl(\emptyset) = \emptyset , m_X -Cl(X) = X, m_X -Int(\emptyset) = \emptyset and m_X -Int(X) = X,

(4) If $A \subset B$, then m_X -Cl $(A) \subset m_X$ -Cl(B) and m_X -Int $(A) \subset m_X$ -Int(B),

(5) $A \subset m_X$ -Cl(A) and m_X -Int(A) $\subset A$,

(6) m_X -Cl $(m_X$ -Cl(A)) = m_X -Cl(A) and m_X -Int $(m_X$ -Int(A)) = m_X -Int(A).

Lemma 3.2 Let X be a nonempty set with a minimal structure m_X and A a subset of X. Then $x \in m_X$ -Cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Proof. Necessity. Suppose that there exists $U \in m_X$ containing x such that $U \cap A = \emptyset$. Then $A \subset X - U$ and $X - (X - U) = U \in m_X$. Then m_X -Cl(A) $\subset X - U$. Since $x \in U$, we have $x \notin m_X$ -Cl(A).

Sufficiency. Suppose that $x \notin m_X$ -Cl(A). There exists a subset F of X such that $X - F \in m_X$, $A \subset F$ and $x \notin F$. Thus there exists $(X - F) \in m_X$ containing x such that $(X - F) \cap A = \emptyset$.

Definition 3.3 A minimal structure m_X on a nonempty set X is said to have property (\mathcal{B}) [13] if the union of any family of subsets belong to m_X belongs to m_X .

Lemma 3.3 (Popa and Noiri [24]). For a minimal structure m_X on a nonempty set X, the following are equivalent:

(1) m_X has property (\mathcal{B});

(2) If m_X -Int(V) = V, then $V \in m_X$;

(3) If m_X -Cl(F) = F, then $X - F \in m_X$.

Lemma 3.4 Let X be a nonempty set and m_X a minimal structure on X satisfying (B). For a subset A of X, the following properties hold:

(1) $A \in m_X$ if and only if m_X -Int(A) = A,

(2) A is m_X -closed if and only if m_X -Cl(A) = A,

(3) m_X -lnt(A) $\in m_X$ and m_X -Cl(A) is m_X -closed.

Proof. This follows immediately from Lemmas 3.1 and 3.3.

Definition 3.4 Let (X, m_X) be a nonempty set X with a minimal structure m_X and (Y, σ) a topological space. A multifunction $F : (X, m_X) \to (Y, \sigma)$ is said to be

(1) upper s-m-continuous at $x \in X$ if for each $V \in \sigma$ containing F(x) and having connected complement, there exists $U \in m_X$ containing x such that $F(U) \subset V$,

(2) lower s-m-continuous at $x \in X$ if for each $V \in \sigma$ meeting F(x) and having connected complement, there exists $U \in m_X$ containing x such that $F(u) \cap V \neq \emptyset$ for each $u \in U$,

(3) upper/lower s-m-continuous if it has this property at each point x of X.

Theorem 3.1 For a multifunction $F : (X, m_X) \to (Y, \sigma)$, the following are equivalent:

(1) F is upper s-m-continuous;

(2) $F^+(V) = m_X$ -Int $(F^+(V))$ for each open set V of Y having connected complement;

(3) $F^{-}(K) = m_X - \operatorname{Cl}(F^{-}(K))$ for every connected closed set K of Y;

(4) m_X -Cl $(F^-(B)) \subset F^-(Cl(B))$ for every subset B of Y having the connected closure;

(5) $F^+(\text{Int}(B)) \subset m_X$ -Int $(F^+(B))$ for every subset B of Y such that Y - Int(B) is connected.

Proof. (1) \Rightarrow (2): Let V be any open set of Y having connected complement and $x \in F^+(V)$. There exists $U \in m_X$ containing x such that $F(U) \subset V$. Therefore, we have $x \in U \subset F^+(V)$ and hence $x \in m_X$ - $\operatorname{Int}(F^+(V))$. This shows that $F^+(V) \subset m_X$ - $\operatorname{Int}(F^+(V))$. By Lemma 3.1, we have m_X - $\operatorname{Int}(F^+(V)) \subset F^+(V)$. Therefore, we obtain $F^+(V) = m_X$ - $\operatorname{Int}(F^+(V))$.

(2) \Rightarrow (3): Let K be any connected closed set of Y. Then by Lemma 3.1, we have $X - F^-(K) = F^+(Y - K) = m_X$ -Int $(F^+(Y - K)) = m_X$ -Int $(X - F^-(K)) = X - m_X$ -Cl $(F^-(K))$. Therefore, we obtain $F^-(K) = m_X$ -Cl $(F^-(K))$.

(3) \Rightarrow (4): Let *B* be a subset of *Y* having the connected closure. By Lemma 3.1, we have $F^-(B) \subset F^-(\operatorname{Cl}(B)) = m_X \operatorname{-Cl}(F^-(\operatorname{Cl}(B)))$ and m_{X^-} $\operatorname{Cl}(F^-(B)) \subset F^-(\operatorname{Cl}(B)).$

(4) \Rightarrow (5): Let *B* be a subset of *Y* such that *Y* - Int(*B*) is connected. Then by Lemma 3.1 we have

 $X - m_X \operatorname{-Int}(F^+(B)) = m_X \operatorname{-Cl}(X - F^+(B))$ = $m_X \operatorname{-Cl}(F^-(Y - B)) \subset F^-(Y - \operatorname{Int}(B)) \subset X - F^+(\operatorname{Int}(B)).$ Therefore, we obtain $F^+(\operatorname{Int}(B)) \subset m_X \operatorname{-Int}(F^+(B)).$

 $(5) \Rightarrow (1)$: Let $x \in X$ and V be any open set of Y containing F(x) and having connected complement. Then $x \in F^+(V) = F^+(\operatorname{Int}(V)) \subset m_X$ - $\operatorname{Int}(F^+(V))$. There exists $U \in m_X$ containing x such that $U \subset F^+(V)$; hence $F(U) \subset V$. This shows that F is upper s-m-continuous.

Theorem 3.2 For a multifunction $F : (X, m_X) \to (Y, \sigma)$, the following are equivalent:

(1) F is lower s-m-continuous;

(2) $F^{-}(V) = m_X$ -Int $(F^{-}(V))$ for each open set V of Y having connected complement;

(3) $F^+(K) = m_X - \operatorname{Cl}(F^+(K))$ for every connected closed set K of Y; (4) $m_X - \operatorname{Cl}(F^+(B)) \subset F^+(\operatorname{Cl}(B))$ for every subset B of Y having the connected closure; (5) $F^-(\operatorname{Int}(B)) \subset m_X - \operatorname{Int}(F^-(B))$ for every subset B of Y such that Y -

(b) $F^{-}(Int(B)) \subset m_X$ -Int $(F^{-}(B))$ for every subset B of Y such that Y = Int(B) is connected.

Proof. The proof is similar to that of Theorem 3.1.

Corollary 3.1 Let (X, m_X) be a nonempty set X with a minimal structure m_X satisfying \mathcal{B} and (Y, σ) a topological space. For a multifunction F: $(X, m_X) \to (Y, \sigma)$, the following are equivalent:

(1) F is upper/lower s-m-continuous;

(2) $F^+(V)/F^-(V)$ is m_X -open for each open set V of Y having connected complement;

(3) $F^{-}(K)/F^{+}(K)$ is m_X -closed for every connected closed set K of Y.

Proof. This follows from Theorems 3.1 and 3.2 and Lemma 3.4.

Remark 3.3 Let $m_X = \tau$ (resp. SO(X), PO(X), SPO(X)). Then an upper/lower *s*-*m*-continuous multifunction $F : (X, m_X) \to (Y, \sigma)$ is upper/lower *s*-continuous (resp. upper/lower *s*-quasi-continuous, upper/lower *s*-precontinuous, upper/lower *s*- β -continuous). Theorems 3.1 and 3.2 establish their characterizations which are obtained in [12] (resp. [8], [22], [23]).

Corollary 3.2 Let $F : (X, m_X) \to (Y, \sigma)$ be a multifunction. If for every connected set G of $Y F^-(G) = m_X \operatorname{-Cl}(F^-(G))$ (resp. $F^+(G) = m_X \operatorname{-Cl}(F^+(G))$), then F is upper s-m-continuous (resp. lower s-m-continuous).

Proof. Let G be any open set of Y having connected complement. Then Y - G is connected and closed. By the hypothesis $X - F^+(G) = F^-(Y - G) = m_X - \operatorname{Cl}(F^-(Y - G)) = m_X - \operatorname{Cl}(X - F^+(G)) = X - m_X$. Int $(F^+(G))$. Therefore, we have $F^+(G) = m_X$ -Int $(F^+(G))$. By Theorem 3.1, F is upper s-m-continuous. The proof for lower s-m-continuity is entirely similar.

Remark 3.4 Let $m_X = PO(X)$ (resp. SPO(X)). Then, Corollary 3.2 establishes the results which are obtained in [22] (resp. [23]).

Definition **3.5** A function $f: (X, m_X) \to (Y, \sigma)$ is said to be *s*-*m*-continuous if for each point $x \in X$ and each open set V containing f(x) and having connected complement, there exists $U \in m_X$ containing x such that $f(U) \subset V$.

Corollary 3.3 For a function $f : (X, m_X) \to (Y, \sigma)$, the following are equivalent:

(1) f is s-m-continuous;

(2) $f^{-1}(V) = m_X$ -Int $(f^{-1}(V))$ for each open set V of Y having connected complement;

(3) $f^{-1}(K) = m_X - \operatorname{Cl}(f^{-1}(K))$ for every connected closed set K of Y;

(4) m_X -Cl $(f^{-1}(B)) \subset f^{-1}(Cl(B))$ for every subset B of Y having the connected closure;

(5) $f^{-1}(\operatorname{Int}(B)) \subset m_X \operatorname{-Int}(f^{-1}(B))$ for every subset B of Y such that $Y - \operatorname{Int}(B)$ is connected.

Remark 3.5 Let $m_X = \tau$ (resp. SO(X), PO(X), SPO(X)). Then a *s*-*m*-continuous function $f : (X, m_X) \to (Y, \sigma)$ is *s*-continuous (resp. *s*-quasi-continuous, *s*-precontinuous, *s*- β -continuous). Corollary 3.3 establishes the characterizations of *s*-continuity (resp. *s*-precontinuity, *s*- β -continuity) which are obtained in [9] (resp. [22], [23]).

Definition 3.6 A subset A of a topological space (X, τ) is said to be (1) α -paracompact [10] if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally finite in X, (2) α -regular [27] if for each $a \in A$ and each open set U of X containing a, there exists an open set G of X such that $a \in G \subset Cl(G) \subset U$.

Lemma 3.5 (Kovačević [10]). If A is an α -regular α -paracompact set of a space X and U is an open neighborhood of A, then there exists an open set G of X such that $A \subset G \subset \operatorname{Cl}(G) \subset U$.

For a multifunction $F : (X, m_X) \to (Y, \sigma)$, we define a multifunction $\operatorname{Cl} F : (X, m_X) \to (Y, \sigma)$ as follows: $(\operatorname{Cl} F)(x) = \operatorname{Cl}(F(x))$ for each point $x \in X$. Similarly, we can define $\alpha \operatorname{Cl} F$, $\operatorname{sCl} F$, $\operatorname{pCl} F$.

Lemma 3.6 If $F : (X, m_X) \to (Y, \sigma)$ is a multifunction such that F(x) is α -paracompact α -regular for each $x \in X$, then for each open set V of Y $F^+(V) = G^+(V)$, where G denotes αOIF , sClF, pClF, spClF or ClF.

Proof. The proof is similar to that of Lemma 3.3 in [21].

Theorem 3.3 Let $F : (X, m_X) \to (Y, \sigma)$ be a multifunction such that F(x) is α -regular α -paracompact for each $x \in X$. Then the following are equivalent:

7

- (1) F is upper s-m-continuous;
- (2) ClF is upper s-m-continuous;
- (3) αClF is upper s-m-continuous;
- (4) sClF is upper s-m-continuous;
- (5) pClF is upper s-m-continuous;
- (6) $\operatorname{spCl} F$ is upper s-m-continuous.

Proof. We set $G = \alpha \text{ClF}$, sClF, pClF, spClF or ClF. Suppose that F is upper s-m-continuous. Let V be any open set of Y containing G(x) and having connected complement. By Lemma 3.6, we have $G^+(V) = F^+(V)$ and hence there exists $U \in m_X$ containing x such that $F(U) \subset V$. Since F(u) is α -paracompact and α -regular for each $u \in U$, by Lemma 3.5 there exists an open set H such that $F(u) \subset H \subset \text{Cl}(H) \subset V$; hence $G(u) \subset \text{Cl}(H) \subset V$ for every $u \in U$. Therefore, we obtain $G(U) \subset V$. This shows that G is upper s-m-continuous.

Conversely, suppose that G is upper s-m-continuous. Let $x \in X$ and V be any open set of Y containing F(x) and having connected complement. By Lemma 3.6, we have $x \in F^+(V) = G^+(V)$ and hence $G(x) \subset V$. There exists $U \in m_X$ containing x such that $G(U) \subset V$. Therefore, we obtain $U \subset G^+(V) = F^+(V)$ and hence $F(U) \subset V$. This shows that F is upper s-m-continuous.

Lemma 3.7 If $F : (X, m_X) \to (Y, \sigma)$ is a multifunction, then for each open set V of Y $G^-(V) = F^-(V)$, where $G = \alpha \text{Cl}F$, sClF, pClF, spClF or ClF.

Proof. The proof is similar to that of Lemma 3.4 in [21].

Theorem 3.4 For a multifunction $F : (X, m_X) \to (Y, \sigma)$, the following are equivalent:

- (1) F is lower s-m-continuous;
- (2) ClF is lower s-m-continuous;
- (3) αClF is lower s-m-continuous;
- (4) sClF is lower s-m-continuous;
- (5) pClF is lower s-m-continuous;
- (6) $\operatorname{spCl} F$ is lower s-m-continuous.

8

Proof. By using Lemma 3.7 this is shown similarly as in Theorem 3.3.

Remark 3.6 Let $m_X = SO(X)$ (resp. PO(X), SPO(X)). Then, Theorem 3.4 establishes the results which are obtained in [20] (resp. [22], [23]).

4 Some properties

For a multifunction $F : (X, m_X) \to (Y, \sigma)$, the graph $G(F) = \{(x, F(x)) : x \in X\}$ is said to be *strongly m-closed* if for each $(x, y) \in (X \times Y) - G(F)$, there exist $U \in m_X$ containing x and an open set V of Y containing y such that $[U \times \operatorname{Cl}(V)] \cap G(F) = \emptyset$.

Lemma 4.1 A multifunction $F : (X, m_X) \to (Y, \sigma)$ has a strongly mclosed graph if and only if for each $(x, y) \in (X \times Y) - G(F)$, there exist $U \in m_X$ containing x and an open set V of Y containing y such that $F(U) \cap \operatorname{Cl}(V) = \emptyset$.

Proof. This proof is obvious.

Theorem 4.1 Let (Y, σ) be a regular locally connected space. If $F: (X, m_X) \to (Y, \sigma)$ is an upper s-m-continuous multifunction such that F(x) is closed for each $x \in X$, then G(F) is strongly m-closed.

Proof Let $(x, y) \in (X \times Y) - G(F)$, then $y \in Y - F(x)$. Since Y is regular, there exist disjoint open sets V_1 and V_2 of Y such that $F(x) \subset V_1$ and $y \in V_2$. Moreover, since Y is locally connected, there exists an open connected set V such that $y \in V \subset \operatorname{Cl}(V) \subset V_2$. Since F is upper s-mcontinuous and $Y - \operatorname{Cl}(V)$ is an open set having connected complement, there exists $U \in m_X$ containing x such that $F(U) \subset Y - \operatorname{Cl}(V)$. Therefore, we have $F(U) \cap \operatorname{Cl}(V) = \emptyset$ and by Lemma 4.1 G(F) is strongly m-closed.

Remark 4.1 Let $m_X = SO(X)$ (resp. PO(X), SPO(X)). Then, Theorem 4.1 establishes the results which are obtained in [20] (resp. [22], [23]).

Let X be a nonempty set with a minimal structure m_X and A a subset of X. The *m*-frontier of A, denoted by mFr(A), is defined by $mFr(A) = m_X-Cl(A) \cap m_X-Cl(X-A) = m_X-Cl(A) - m_X-Int(A)$.

Theorem 4.2 The set of all points x of X at which a multifunction F: $(X, m_X) \rightarrow (Y, \sigma)$ is not upper s-m-continuous (resp. lower s-m-continuous) is identical with the union of the m-frontiers of the upper inverse (resp. lower inverse) images of open sets containing (resp. meeting) F(x) and having connected complement.

9

Proof. Let x be a point of X at which F is not upper s-m-continuous. Then, there exists an open set V of Y containing F(x) and having connected complement such that $U \cap (X - F^+(V)) \neq \emptyset$ for every $U \in m_X$ containing x. Therefore, we have $x \in m_X$ -Cl $(X - F^+(V))$ and hence $x \in mFr(F^+(V))$ since $x \in F^+(V) \subset m_X$ -Cl $(F^+(V))$.

Conversely, suppose that V is an open set of Y containing F(x) and having connected complement such that $x \in \operatorname{mFr}(F^+(V))$. If F is upper s-m-continuous at x, then there exists $U \in m_X$ containing x such that $U \subset F^+(V)$; hence $x \in m_X$ -Int $(F^+(V))$. This is a contradiction and hence F is not upper s-m-continuous at x.

The proof for lower s-m-continuity is similar.

Definition 4.1 A multifunction $F: (X, m_X) \to (Y, \sigma)$ is said to be upper s-m-rarely continuous at a point x of X if for each open set G of Y containing F(x) and having connected complement, there exist a rare set R_G with $\operatorname{Cl}(R_G) \cap G = \emptyset$ and a m_X -open set U containing x such that $F(U) \subset G \cup R_G$. A multifunction F is said to be upper s-m-rarely continuous if it has this property at each point of X.

Theorem 4.3 Let X be a nonempty set with two minimal structures m_X^0 and m_X^1 such that $U \cap V \in m_X^1$ whenever $U \in m_X^0$ and $V \in m_X^1$. If a multifunction $F: X \to (Y, \sigma)$ satisfies the following two conditions:

(1) $F: (X, m_X^0) \to (Y, \sigma)$ is upper s-m-rarely continuous and

(2) for each open set G containing F(x) and having connected complement, $F^{-}(Cl(R_G))$ is a m_X^1 -closed set of X, where R_G is the rare set of Definition 4.1,

then $F: (X, m_X^1) \to (Y, \sigma)$ is upper s-m-continuous.

Proof. Let $x \in X$ and G be an open set of Y containing F(x) and having connected complement. Since $F: (X, m_X^0) \to (Y, \sigma)$ is upper sm-rarely continuous, there exist $V \in m_X^0$ containing x and a rare set R_G with $\operatorname{Cl}(R_G) \cap G = \emptyset$ such that $F(V) \subset G \cup R_G$. If we suppose that $x \in F^-(\operatorname{Cl}(R_G))$, then $F(x) \cap \operatorname{Cl}(R_G) \neq \emptyset$, but $F(x) \subset G$ and $G \cap \operatorname{Cl}(R_G) = \emptyset$. This is a contradiction. Thus $x \notin F^-(\operatorname{Cl}(R_G))$. Let $U = V \cap (X - F^-(\operatorname{Cl}(R_G)))$. Then $U \in m_X^1$ and $x \in U$ since $x \in V$ and $x \in X - F^-(\operatorname{Cl}(R_G))$. Let $s \in U$, then $F(s) \subset G \cup R_G$ and $F(s) \cap \operatorname{Cl}(R_G) = \emptyset$. Therefore, we have $F(s) \cap R_G = \emptyset$ and hence $F(s) \subset G$. Since $U \in m_X^1$ containing x, it follows that $F: (X, m_X^1) \to (Y, \sigma)$ is upper s-m-continuous.

Remark 4.2 Let $m_X = \text{SPO}(X)$. Then, Theorem 4.3 establishes the result which is obtained in [23].

Definition 4.2 A multifunction $F : (X, m_X) \to (Y, \sigma)$ is said to be *lower m*-continuous if for each $x \in X$ and every open set V of Y meeting F(x)there exists $U \in m_X$ containing x such that $F(u) \cap V \neq \emptyset$ for every $u \in U$.

Lemma 4.2 A multifunction $F : (X, m_X) \to (Y, \sigma)$ is lower m-continuous if and only if $F(m_X - \operatorname{Cl}(A)) \subset \operatorname{Cl}(F(A))$ for every subset A of X.

Proof. This follows from Theorem 3.2 of [18].

Theorem 4.4 If $F: (X, m_X) \to (Y, \sigma)$ is lower s-m-continuous and F(A) is connected for every subset A of X, then F is lower m-continuous.

Proof. Let A be any subset of X. Since $\operatorname{Cl}(F(A))$ is closed and connected, by Theorem 3.2 $F^+(\operatorname{Cl}(F(A))) = m_X - \operatorname{Cl}(F^+(\operatorname{Cl}(F(A))))$ and $A \subset F^+(F(A))) \subset F^+(\operatorname{Cl}(F(A)))$. Thus we have $F(m_X - \operatorname{Cl}(A)) \subset \operatorname{Cl}(F(A))$. It follows from Lemma 4.2 that F is lower m-continuous.

Remark 4.3 If $m_X = SO(X)$ (resp. PO(X), SPO(X)), then Theorem 4.4 establishes the results which are obtained in [20] (resp. [22], [23]).

5 New forms of *s*-continuity in topological spaces

There are many modifications of open sets in topological spaces. We shall recall the main ones. Let (X, τ) be a topological space and A a subset of X. A subset A is said to be *regular closed* (resp. *regular open*) if Cl(Int(A)) = A (resp. Int(Cl(A)) = A).

Definition 5.1 A subset A of a topological space (X, τ) is said to be

(1) θ -open [26] if for each $x \in A$ there exists an open set U of X such that $x \in U \subset Cl(U) \subset A$,

(2) δ -open [26] if for each $x \in A$ there exists a regular open set U of X such that $x \in U \subset A$,

(3) b-open [4] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$.

Definition 5.2 A subset A of a topological space (X, τ) is said to be

(1) semi- θ -open [6] if for each $x \in A$ there exists a semi-open set U of X such that $x \in U \subset sCl(U) \subset A$,

(2) semi-regular [6] if it is semi-open and semi-closed.

A point $x \in X$ is called a δ -cluster point of A if $Int(Cl(V)) \cap A \neq \emptyset$ for every open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $_{\delta}Cl(A)$. The set $\{x \in X : x \in U \subset A$ for some regular open set U of $X\}$ is called the δ -interior of A and is denoted by $_{\delta}lnt(A)$.

Definition 5.3 A subset A of a topological space (X, τ) is said to be

(1) δ -preopen [25] if $A \subset \operatorname{Int}({}_{\delta}\operatorname{Cl}(A)),$

(2) δ -semi-open [19] if $A \subset Cl(\delta Int(A))$.

The family of all θ -open (resp. δ -open, *b*-open, semi- θ -open, semiregular, δ -preopen, δ -semi-open) sets in a topological space X is denoted by $\theta O(X)$ (resp. $\delta O(X)$, BO(X), S $\theta O(X)$, SR(X), $\delta PO(X)$, $\delta SO(X)$). These families have the property of the minimal structure. Moreover, they have the following properties:

Remark 5.1 (1) $\theta O(X)$, $\delta O(X)$ and $\alpha(X)$ have the structure of topology, (2) BO(X), $S\theta O(X)$, $\delta PO(X)$ and $\delta SO(X)$ have property \mathcal{B} .

For each of modifications of open sets stated above, we can define a new type of upper/lower s-continuous multifunctions and obtain their characterizations and properties from Sections 3 and 4. For example, let $m_X = \alpha(X)$, then we obtain the following definitions and characterizations.

Definition 5.4 Let (X, τ) and (Y, σ) be topological spaces. A multifunction $F: (X, \tau) \to (Y, \sigma)$ is said to be

(1) upper s- α -continuous at $x \in X$ if for each $V \in \sigma$ containing F(x) and having connected complement, there exists an α -open set U of X containing x such that $F(U) \subset V$,

(2) lower s- α -continuous at $x \in X$ if for each $V \in \sigma$ meeting F(x) and having connected complement, there exists an α -open set U of X containing x such that $F(u) \cap V \neq \emptyset$ for each $u \in U$,

(3) upper/lower s- α -continuous if it has this property at each point x of X.

Theorem 5.1 For a multifunction $F : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(1) F is upper s- α -continuous;

(2) $F^+(V)$ is α -open in X for each open set V of Y having connected complement;

(3) $F^{-}(K)$ is α -closed in X for every connected closed set K of Y; (4) $\alpha \operatorname{Cl}(F^{-}(B)) \subset F^{-}(\operatorname{Gl}(B))$ for every subset B of Y having the connected closure;

(5) $F^+(\operatorname{Int}(B)) \subset \alpha \operatorname{Int}(F^+(B))$ for every subset B of Y such that $Y - \operatorname{Int}(B)$ is connected.

Theorem 5.2 For a multifunction $F : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(1) F is lower s- α -continuous;

(2) $F^{-}(V)$ is α -open in X for each open set V of Y having connected complement;

(3) $F^+(K)$ is α -closed in X for every connected closed set K of Y;

(4) $\alpha \operatorname{Cl}(F^+(B)) \subset F^+(\operatorname{Cl}(B))$ for every subset B of Y having the connected closure;

(5) $F^{-}(\text{Int}(B)) \subset \alpha \text{Int}(F^{-}(B))$ for every subset B of Y such that Y - Int(B) is connected.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashmi, β-closure and β-interior, J. Fac. Ed. Ain Shams Univ. 10 (1986), 235–245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
- [4] D. Andrijević, On b-open sets, Mat. Vesnik 48 (1996), 59-64.
- [5] S. G. Crossley and S. K. Hildeband, Semi-closure, Texas J. Sci. 22 (1971), 99–112.
- [6] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987), 226–233.
- [7] N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 27(75) (1983), 311-315.

- [8] J. Ewert and T. Lipski, On s-quasi-continuous multivalued maps, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 167– 183.
- [9] J. K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, Proc. Amer. Math. Soc. 72 (1978), 175–181.
- [10] I. Kovačević, Subsets and paracompactness, Univ. u Novom Sadu Zb. Rad. Priod.-Mat. Fak. Ser. Mat. 14 (1984), 79–87.

- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [12] T. Lipski, S-continuous multivalued maps, Math. Chronicle 18 (1989), 57-61.
- [13] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, pp. 13–18.
- [14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [15] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. 41 (1983), 213–218.
- [16] M. N. Mukherjee and C. K. Basu, On semi-θ-closed sets, semi-θconnectedness and some associated mappings, Bull. Calcutta Math. Soc. 83 (1991), 227-238.
- [17] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [18] T. Noiri and V. Popa, On upper and lower M-continuous multifunctions, Filomat (Nis) 14 (2000) (to appear).
- [19] J. H. Park, B. Y. Lee and M. J. Son, On δ-semi-open sets in topological spaces, J. Indian Acad. Math. 19 (1997), 59–67.
- [20] V. Popa and T. Noiri, Properties of s-quasi-continuous multifunctions, Far East J. Math. Sci. 1 (1993), 85–91.

- [21] V. Popa and T. Noiri, On upper and lower β-continuous multifunctions, Real Anal. Exchange 22 (1996/97), 362–376.
- [22] V. Popa and T. Noiri, On s-precontinuous multifunctions, Demonstratio Math. 33 (2000), 679–687.
- [23] V. Popa and T. Noiri, On s-β-continuous multifunctions, J. Egypt. Math. Soc. 8 (2000), 127–137.
- [24] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sei. Kochi Univ. Ser. A Math. 22 (2001), 9-18.
- [25] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica **21** (1993), 357-366.
- [26] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. 78 (1968), 103–118.
- [27] J. D. Wine, Locally paracompact spaces, Glasnik Mat. 10(30) (1975), 351–357.

Valeriu POPA DEPARTMENT OF MATHEMATICS UNIVERSITY OF BACĂU 5500 BACĂU, ROMANIA e-mail:vpopa@ub.ro

Takashi NOIRI DEPARTMENT OF MATHEMATICS YATSUSHIRO COLLEGE OF TECHNOLOGY YATSUSHIRO, KUMAMOTO, 866-8501 JAPAN e-mail:noiri@as.yatsushiro-nct.ac.jp