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COMMUTATIVITY THEOREMS FOR RINGS
THROUGH A STREB RESULT

Moharram A. Khan

Abstract. In the present paper, we prove the commutativity of a ring with
unity satisfying any one of the following properties:

{1 —p(yz™)} [yz™ — 2"b(yz™) z°, z[{1 — q(yz™)} = 0,
Yz, y"] = g(z)[z%f (), y]h(z) and [z,y"] y* = §(z)[z* f(z),y]A(2),

for some b(X) € X?Z[X], and p(X), ¢(X) € XZ[X] and f(X), f(X), g(X)
§(X),h(X), h(X) € Z[X], where m > 0,7 > 0,5 > 0,n > 0,£ > 0 are inte-
gers. Further, we extend these results to the case when integral exponents
in the underlying conditions are no longer fixed, rather they depend on the
pair of ring elements z,y for their values. Moreover, it is also shown that
the above result is true for s-unital rings. Finally, our results generalize

many known commutativity theorems.

AMS Subject Classifications (1991) : 16U80

Keywords and phrases. Commutativity theorems, factorsubrings, poly-
nomial identities, s-unital rings.

1. Introduction

Throughout, R will represent an associative ring (may be without
unity), N = N(R), the set of nilpotent elements of R, Z = Z(R), the center
of R,C = C(R), the commutator ideal of R, and U = U(R), the group of
units of R. For any z,y € R, [z, y] denotes the commutator zy — yz. As
usual Z[X] is the totality of polynomials in X with coefficients in Z, the
ring of integers. Consider the following ring properties : '
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For each z,y € R, there exist polynomials b(X) € X?Z[X] and
p(X),q(X) € XZ[X] such that

{1 — p(yz™)}yz™ — 2"b(yz™)z®, {1 — ¢(yz™)} = 0,
where m > 0,7 > 0,s > 0 are fixed integers.

For each z,y € R there exist integers m > 0,7 > 0,5 > 0 and
polynomials b(X) € X2Z[X] and p(X), ¢(X) € XZ[X] such that
{1 - p(yz™)} [yz™ — z"b(yz™)2®, z]{1 — q(y=™)} = 0.

For every z,y € R, there exist polynomials f(X), f(X), g(X), §(X),
h(X) and h(X) in Z[X] such that

y*[z,y™] = 9(2)[z*f (2), y)h(z)

and
y'[z,y"] = §(z) [z f (), y)h(=),

where s > 0,¢ > 0,m > 1,n > 1 are fixed integers with (m,n) = 1.

For each z,y € R, there exist integers s = s(z,y) > 0,
t=t(z,y) > 0,m = m(z,y) > 1,n = n(z, )>1w1th(mn)—1and
polynomials f(X), f(X),g(X),3(X), h(X) h(X) € Z[X] such that

y’[z,y™) = g(z)[s*f (z), y}h(z)

and

y'[z,y") = §(2)[” f(2), ylh().

‘For each z,y in R, there exist polynomials f(X), f(X),g(X),§(X)

and h(X),h(X) in Z[X] such that

[z,y™)y° = g(z)[z* f (), y)h(z)

and
[z,y™y* = §(2)[z°f(2), ylh(w),
where s > 0,£ > 0,m > 1,n > 1 are fixed integers with (m,n) = 1.

For each z,y € R there exist integers s = s(z,y) > 0, ‘
t =t(z,y) > 0,m =m(z,y) > 1,n =n(z, )>1w1th(mn)—1and




polynomials f(X), f(X),g(X),§(X),h(X),h(X) in Z[X] such that

[z,y™)y* = g(z)[z* f (z),y]h(z)

and
[z,5™y" = §(z)[z” f (), y)h(z).

(IV) For each z,y € R, there exist b(t), g(¢) in t?Z[t] such that
[z — g(z),y — b(y)] = 0.

(V) For each z,y € R, there exists b(t) € t2Z[t] such that [z —b(z),y] = 0.

Searcoid and MacHale [10] proved commutativity of a ring satisfying
the condition zy = (zy)™®Y¥) with n(z,y) > 1. Tominaga and Yaqub [12,
Theorem 2] established that if R is a ring such that either zy = p(zy)
or zy = p(yz), where p(X) in X?Z[X], then R is commutative. A nice
theorem of Herstein [3] states that if R is a ring satisfying the property
(V), then R is commutative. It is natural to consider the related properties;
[zy — p(zy),s] = 0 and [zy — q(yz),z] = 0 for some p(X), ¢(X) in X?Z[X)
depending on ring’s elements z,y. Putcha and Yaqub [9] remarked that
if for each =,y € R, there exists a polynomial p(X) € X?Z[X] such that
zy —p(zy) is central, then R? must be central. Also the author jointly with
Bell and Quadri [1, Theorem 2] obtained the commutativity of the rings
with unity 1 satisfying polynomial identitites of the form [zy — p(zy), z] =
0 and [zy — q(zy),z] = 0, where p(X),q(X) are considered to be fixed.
Motivated by these observations, the author [5] found the commutativity
of rings with unity 1 satisfying the property [yz™ — z™b(y)z!, z] = 0, where
the polynomial b(z) in X2Z[X] depends on the pairs z,y € R and fixed
non-negative integers [,m,n. Hence a natural question arises: What can
we say about the commutativity of ring R, if the underlying condition is
replaced by [yz™ —z™b(y)z!, ] = 07 In the present note, we not only answer
this question, but also we prove rather a more general result by establishing
that a ring with unity 1 satisfying the property (I) is commutative. Further,
we shall consider the property (I)’, where integral exponents are allowed
to vary with the pair of ring’s elements z,y and also the ring satisfies
the Chacron’s condition (IV). Our next aim is to establish commutativity
of one-sided s-unital rings satisfying any one of the properties (II), (III),
(IT)" and (HI)’. In fact, several commutativity results can be obtained as
corollaries to our results, for instance, [4, Theorem], [5, Theorems 1 and 2],
[8, Theorems 1 & 2], [10, Theorem ], [12, Theorem ].
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2. Results

We first consider the following types of rings.

(i), (GF(;(p) GF(;(p)> ,p a prine,
. 0 GF(p) .

(i) <0 GF(i)) ,p a prime.

(i) (sz')(p) gggg) ,D a prime.

(ii) M,(F) = {(g U(ba)> | a,b € F}, where F' is a finite field with a

non-trivial automorphism o.
(iii) A non-commutative division ring,.

(iv) § =< 1> +4T,T a non-commutative radical subring of S, must be a
domain.

(v) S =<1>+4T,T a non-commutative subring of S such that
T[T =[T,T|T =0.

In a recent paper [11], Streb gave a nice classification for non-commuta-
tive rings which yields a powerful tool in obtaining a number of commu-
tativity theorems (see [5, 6, 7]). It follows from the proof of [6, Corollary
1], that if R is a non-commutative ring with unity 1, then there exists a
factorsubring of R which is of type (i), (ii), (iii}, (iv) or (v). This observa-
tion gives the following proposition that plays a vital role in our subsequent
discussion.

Proposition 2.1. Let P be a ring property which is inherited by factor-
subrings. If no ring of type (i), (ii), (iii), (iv) or (v) satisfies P, then every
ring with unity 1 and satisfying P is commutative.

We state the following known results.
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Lemma 2.1 [4]. Let f be a polynomial in n non-commuting indetermi-

nates
T1, 9, ,Tn with relatively prime integral coefficients. Then the following

are equivalent.

(a) For any ring R satisfying the polynomial identity f = 0,C is a nil
ideal.

(b) For every prime p, (GF(p))s fails to satisfy f = 0.

(c) Every semiprime ring satisfying f = 0 is commutative.

Lemma 2.2 [7]. If Ris a non-commutative ring satisfying (V), then there
exists a factorsubring of R which is of type (i) or (ii).

Lemma 2.3 [3]. Let R be a ring in which for all z,y in R, there exists
polynomial f(X) in X2Z[X] such that [z — f(z),y] = 0. Then R is com-
mutative.

Now, we prove the following results called steps.

Step 2.1. Let R be a division ring satisfying the property (I). Then R is
commutative. ‘
Before proving Step 2.1, we begin with

Claim 2.1. Let R be a ring with unity 1 satisfying the property (I).
If z is in U, then for each y € R there exists ¢(X) € X2?Z[X] such that

[z, —q(y)] = 0.
Proof. Choose polynomials b(X) in X2?Z[X] and p(X),q(X) in XZ[X]
such that

{1 — plyv™"u™)Hyu ™™ — u"b(yu""u"™ )u’, u]
{1 —qlyu™mu™)} =0
or
{1 —p(y)}y — v"b()u’, ul{l — q(y)} = 0.
The above expression depends on a choice of v and y. This shows that

either 1 —p(y) = 0,1 —g(y) = 0 or [y — u"b(y)u’,u] = 0. Clearly, in the
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first two cases one gets the required result. Now, we may assume that for
unit u € U and arbitrary y € R,

(2.1) [y — u"b(y)u®, u] = 0.
Next, choose polynomial b(X) in X?Z[X] such that

[y —u~"b(y)u"%,u"!] = 0. This implies that [y — v "b(y)u"*,u] = 0,

(2.2) b, bly)] = [, .

In view of (2.1), choose the polynomial ¢(X) in X?Z[X] such that [b(y) —
u"e(b(y))u®,u] = 0; hence for w(X) = ¢(b(X)) € X2?Z[X], we find that

(2.3) fu, b)) = u o, w(y) .

From (2.2) and (2.3), we obtain u"[u,y|u® = u"[u, w(y)]u®.
But u € U; thus [y — w(y),u] = 0.

Proof of Step 2.1. For each z,y € R, there exists b(X) in X?Z[X] such
that [z,y — ¢(y)] = 0, by Claim (2.1). Hence R is a commutative ring by
Lemma 2.3.

Remark 2.1. By making use of Remark 12 of [2] one can prove that if a
ring R with unity satisfies the property (7), then U is commutative.

Step 2.2. Let R be a ring with unity 1 satisfying the property (II) or
(III). Then C C N.

Proof. Let R satisfy (II). Take (1 + y) for y in (II) and subtract (II) to
get
(L +9)°[z, (L + )™ = °[z, 4]

As z = egg = (8 (1)) and y = eyp = (8 (1)) fail to satisfy the above

polynomial identity in (GF(p))q,p a prime. Thus by Lemma 2.1, R has nil
commutator ideal, that is C C N,
Similar arguments can be used to obtain the result if R satisfies (III).
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Remark 2.2. In the hypothesis of Step 2.2, the coefficients of f(x) and
g(x) are not relatively prime.

Step 2.3. Let B be a factorsubring of R. If a ring B is of type (¢); or (ii),
then B does not satisfy (II).

Proof. Let B be of type (i);. Taking z = ej2 and y = e11 + e12 in (II),
we have

gleia)[e2of(e12, €11 + erzlh(e1n) — (e11 + e12)’[erz, (e11 + e12)"] = e12 # 0,

for some integers m > 1,s > 0 and polynomials

F(X),9(X),h(X) in Z[X]. This implies that B does not satisfy (II).
Suppose that B = M,(F) is a ring of type (ii).

It is noticed that N(B) = Fejy. On the contrary, suppose that B satis-
fies (II). Then for any b € N(B) and arbitrary unit u, there exist inte-
gers m = m(b,u) > 1,n = n(bu) > 1,s = s(byu) > 0,t = t(bu) > 0
with the condition that m and n are relatively prime, and polynomials
F(X), f(X),9(X),§(X),h(X),h(X) in Z[X] such that

u’lb, u™) = g(b)[6° £ (b), ulh(b)

and
u'lb,u"] = §(b)[* £ (b), ulh (b).

But 5 = 0 and u is a unit. Then the last two equations imply that
[b,u4™] = 0 and [b,u™] = 0. The relative primeness of m and n show that
[b,u] = 0. Since the non-central element b = ejg, this yields that e is
central, a contradiction. Hence B does not satisfy (II).

Remark 2.3. If a ring B is of type (i), or (ii), then using similar argu-
ments as Step 2.1 with the choice of z = €19,y = €19 + eg2 in (III), one can
prove that B does not satisfy (III).

3. Commutativity of rings with unity 1

Theorem 3.1. Let R be a ring with unity 1 satisfying (I). Then R is
commutative.
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Proof Let R be a ring of the type (i).Suppose that R satisfies (I). Then
in (GF(p))2,p a prime, we get .

{1 — p(er2eBl) HerzeBs — ehyb(erzely)eds, ean]{1 — gle12eB})} = e12 # 0,

for some b(X) € X2Z[X] and p(X), ¢(X) € XZ[X]. Thus, we get a
contradiction and hence, no ring of type (i) satisfies (I).

Further, consider the ring R = M, (F). Let R satisfy (I). Then take

o= (§ ) (@# ol andy=c

such that
{1—p(yz™)} [yz™ —2"b(yz™)2*, z]{1—q(yz™)} = (a—0o(a))o(a)"e12 # O,

for all b(X) € X2Z[X] and p(X),¢(X) € XZ[X]. Thus, R is not of type
(ii).

If R is of type (iii) and satisfies (I), then by Step 2.1, we get a contradiction.
Suppose that R is of type (iv). Let R satisfy (I). Then a careful scrutiny
of the proof of Step 2.1 gives that there exist w € U and arbitrary y € R
such that vy — y p(y) = 0,y — yq(y) = 0 or [u,y — b(y)] = 0 for some
b(X) € X?Z[X] and p(X),q(X) € XZ[X). But in the present case if
ti,ta € T, then u = 1 + ¢; is a unit and there exist b(X) € X2Z[X]
and p(X),q(X) € XZ[X] such that to — tep(t2) = 0,%9 — t2q(t2) = 0 or
[ta — b(t2),1+t1] = 0.

Thus, T' is commutative by Lemma 2.3, a contradiction.

Finally, let R be of type (v). Let ¢1,t2 € T such that [¢1,%2] # 0. Suppose
that R satisfies (I). Then there exist polynomials b(X) in X2?Z[X] and
p(X), ¢(X) in XZ[X] such that

{1 =p(t2(1+ )™ HE2 (1 + )™ — (1 + 21)"b(¢2(1 + 81)™)

(1+21)°% 1+ t]{l —q(t2(1 +t1)™)} = 0.

~ Using the above property T [T,T] = 0 = [T,T| T continuously, we get

{1 —p(ta(l +t1)™)}Hea(1 + )™ 1+ t1 {1 — q(t2(1 +£1)™)} =0

or

{1 = p(ta (L +t2)™)}t2, t:1]{1 — q(t2(1 + £1)™)} = 0.

This implies that
[tZ’ tl] = 0

Therefore T' is commutative. This is a contradiction.
Hence we observe that no ring of type (i), (ii), (hi), (iv) or (v) satisfies

(I) and by Proposition 2.1, R is a commutative ring.
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Corollary 3.1. Let [,m,n be fixed non-negative integers and let R be a
ring with unity 1. If for each z,y € R, there exist a polynomial b(X) in
X2Z[X] such that [yz™ — zb(y)z!, 7] = 0, then R is commutative.

Remark 3.1. Given the integral exponents m,r,s in the property (I)
which is allowed to vary with the pair of ring’s elements z and y, that
is, if R satisfies either of the property (I)’, then a careful scurtiny of the
proof of Theorem 3.1 asserts that R has no factorsubring of type (i) or (ii).
Further, if R satisfies the property (IV), then in view of Lemma 2.3, we get
the following,

Theorem 3.2. Suppose that R is a ring with unity 1 satisfying (IV).
Moreover, if R satisfies the property (I)’, then R is commutative (and con-

versely).

4, Commutativity of one sided s-unital rings

Since there are non-commutative rings with R? being central, neither of
these conditions guarantees the commutativity in arbitrary rings. Following
[3] , a ring R is called left (resp. right) s-unital ring if z € Rz (vesp.
z € zR). A ring R is called s-unital if and only if z € zR N Rz for all
z € R. If R is s-unital (resp. left or right s-unital), then for any finite
subset F' of R there exists an element e € R such that ez = ze = z (resp.
ex =z or ze = z) for all z € F. Such an element e will be called a pseudo
(resp. a pseudo left or a pseudo right) identity of F' in R.

We state the following lemma.

Lemma 4.1.[7] Let R be a left (resp. right) s-unital not a right (resp.
left) s-unital, then R has a factorsubring of type (i); (resp. (¢),).

Theorem 4.1. Let R be a left s-unital ring with unity 1 satisfying (II).
Then R is commutative (and conversely).

Proof It suffices to show that no ring of type (4);, (ii), (iii), or (iv) satisfies
(IT). Step 2.3 shows that no ring of type (2); and type (ii) satisfies (II), and
hence, by Lemma 4.1, R is also s-unital ring. Thus , by [7, Proposition 1],
we can assume that R has unity 1. Applications of Step 2.2 and Lemma
2.1 give that no ring of type (iii) satisfies (II).
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Let R be a ring of type (iv). Assume that c,d € T such that [c,d] # 0.
Then there exist polynomials f(X), f(X), g(X), 3(X), h(X), h(X) in Z[X]
such that

mc,d] = (1+¢)°[(1 + ™, d] = g(d)[d*f (d), Jh(d) =0
and
nle,d] = (14 0)![(1 + )", d] = §(d)[d>F(d), Jh(d) = 0.

By the relative primeness of m and n, the last two expressions give [¢, d] = 0,

a contradiction.
Hence no ring of type (¢);, (ii), (iii) or (iv) satisfies (III) and in view

of Proposition 2.1, R is commutative.

Theorem 4.2, Let R be a right s-unital ring satlsfymg (IIT). Then R is
commutative (and conversely).

Proof Let R be a ring of type (i)r..Suppose that R satisfies (IV). Then
n (GF(p))2, where p a prime, we have

gle1z)[elafe12), e11 + eaalhlerz) — [ers, (€11 + e12)™)(e1r + eg2)® = e12 # 0,

for some integers m > 1,s > 0 and polynomials f(X), ¢(X), h(X) in Z[X].
This implies that R does not satisfy (III).
Using similar arguments used to prove Theorem 4.1 with necessary

variations, it can be shown that no ring of type (ii), (iii) or (iv) satisfies
our hypothesis. Thus in view of Proposition 2.1, R is commutative.

Remark 4.1. Let R satisfy (IV) together with one of the properties (1)’
and (III)’. Then using similar arguments as above and combining Lemma
4.1, and the proofs of Theorems 4.1 and 4.2, we get the following.

Theorem 4.3. Let R be a left (resp. right) s-unital rings satisfying (II)’
(resp. (II1)’). In addition, if R satisfies (IV), then R is commutative (and
conversely).

Remark 4.2. The following example demonstrates that in the hypoth-
esis of Theorems 4.1 and 4.2, the existence of both the conditions in the
properties (II) and (III) is not superfluous (even if ring R has unity 1).
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a b ¢

Example 4.1. Consider R = {(0 a d) | a,b,c,d € GF(2)}. Then

0 0 a

R is a non-commutative ring with unity satisfying the condition yt[z, y*) =
z"[z*, y]z® where 7, s and ¢ may be any non-negative integers.
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