On m-D-Separation Axioms

Takashi NOIRI and Valeriu POPA

Abstract

We introduce the notions of m-D-sets and some lower separation axioms m- D_i (i=0,1,2) on m-structures, which are weaker than topological structures, and obtain a unified theory of separation axioms D_i , s- D_i , p- D_i , θ - D_i , δ -semi D_i , δ -pre D_i (i=0,1,2) in topological spaces.

AMS Math. Subject Classification (2000): 54D10. Key words and Phrases: m-open, m-D-set, m- D_0 , m- D_1 , m- D_2 , m- T_0 , m- T_1 , m- T_2 .

1 Introduction

In 1982, Tong [28] introduced the notion of D-sets and used these sets to introduce a separation axiom D_1 which is strictly between T_0 and T_1 . In 1975, Maheshwari and Prasad [19] introduced new separation axioms semi- T_0 , semi- T_1 and semi- T_2 by using semi-open sets due to Levine [17]. Borşan [4] and Caldas [5] introduced the notions of s-D-sets and a separation axiom s- D_1 which is strictly between semi- T_0 and semi- T_1 . In 1990, Kar and Bhattachryya [16] introduced new separation axioms pre- T_0 , pre- T_1 and pre- T_2 by using preopen sets due to Mashhour et al. [21]. Recently, Caldas [6] and Jafari [15] introduced independently the notions of p-D-sets and a separation axiom p- D_1 which is strictly between pre- T_0 and pre- T_1 . Quite recently, Caldas, Fukutake, Georgiou, Jafari and Noiri introduced the notions of θ -D-sets and a separation axiom θ - D_1 [8], δ -semiD-sets and a separation axiom δ -pre D_1 [7].

In this paper, we define an m-space (X, m), where X is a nonempty set

and m is a subfamily of the power set of X and also satisfies the following conditions: \emptyset , $X \in m$. By using the m-spaces, we define the notions of m-D-sets and separation axioms m- D_i (i = 0, 1, 2) and establish a unified theory of separation axioms D_i , s- D_i , θ - D_i , θ - D_i , θ -semi D_i , θ -pre D_i (i = 0, 1, 2) in topological spaces.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) denote topological spaces. Let A be a subset of X. We denote the closure and the interior of A by $\mathrm{Cl}(A)$ and $\mathrm{Int}(A)$, respectively. The θ -closure (resp. δ -closure) of A, $\mathrm{Cl}_{\theta}(A)$ (resp. $\mathrm{Cl}_{\delta}(A)$), is defined by the set of all $x \in X$ such that $A \cap \mathrm{Cl}(U) \neq \emptyset$ (resp. $A \cap \mathrm{Int}(\mathrm{Cl}(U)) \neq \emptyset$) for every open set U containing x. A subset A is said to be θ -closed (resp. δ -closed) [29] if $A = \mathrm{Cl}_{\theta}(A)$ (resp. $A = \mathrm{Cl}_{\delta}(A)$). The complement of a θ -closed (resp. δ -closed) set is said to be θ -open (resp. δ -open).

Definition 2.1 Let (X, τ) be a topological space. A subset A of X is said to be

- (1) semi-open [17] if $A \subset Cl(Int(A))$,
- (2) preopen [21] if $A \subset Int(Cl(A))$,
- (3) α -open [24] if $A \subset Int(Cl(Int(A)))$,
- (4) δ -semiopen [25] if $A \subset \text{Cl}(\text{Int}_{\delta}(A))$,
- (5) δ -preopen [27] if $A \subset \operatorname{Int}(\operatorname{Cl}_{\delta}(A))$.

The family of all semi-open (resp. preopen, α -open, δ -semiopen, δ -preopen, θ -open, δ -open) sets in a topological space (X, τ) is denoted by SO(X) (resp. PO(X), $\alpha(X)$ or τ^{α} , $\delta SO(X)$, $\delta PO(X)$, τ_{θ} , τ_{δ}).

Definition 2.2 The complement of a semi-open (resp. preopen, α -open, δ -semiopen, δ -preopen) set is said to be *semi-closed* [11] (resp. *preclosed* [21], α -closed [23]), δ -semiclosed [25], δ -preclosed [27]).

Definition 2.3 The intersection of all semi-closed (resp. preclosed, α-closed, δ-semiclosed, δ-preclosed) sets of (X, τ) containing a subset A is called the *semi-closure* [11] (resp. *preclosure* [14], α-closure [23], δ-semiclosure [25], δ-preclosure [27]) and is denoted by sCl(A) (resp. pCl(A), αCl(A), $sCl_δ(A)$, $pCl_δ(A)$).

Definition 2.4 The union of all semi-open (resp. preopen, α -open, δ -semiopen, δ -preopen) sets of X contained in A is called the *semi-interior* (resp. *preinterior*, α -interior, δ -semiinterior, δ -preinterior) of A and is denoted by $\operatorname{sInt}(A)$ (resp. $\operatorname{pInt}(A)$, $\alpha\operatorname{Int}(A)$, $\operatorname{sInt}_{\delta}(A)$, $\operatorname{pInt}_{\delta}(A)$).

If we replace open sets in the usual definition of T_i (i = 0, 1, 2) with semi-open (resp. preopen, θ -open, δ -semiopen, δ -preopen) sets, we obtain separation axioms s- T_i [19] (resp. p- T_i [16], θ - T_i [10], δ -semi T_i [9], (δ , p)- T_i [7]) (i = 0, 1, 2).

Definition 2.5 Let (X, τ) be a topological space. A subset A of X is called a D-set [28] (resp. s-D-set [4], [5], p-D-set [15], [6], θ -D-set [10], δ -semiD-set[9], δ -preD-set [7]) if there exist two open (resp. semi-open, preopen, θ -open, δ -semiopen, δ -preopen) sets U, V in X such that $U \neq X$ and A = U - V.

If we replace open sets in the usual definitions of T_0, T_1, T_2 with D-sets (resp. s-D-sets, p-D-sets, θ -D-sets, δ -semiD-sets, δ -preD-sets), we obtain the definitions of separation axioms D_i [28] (resp. s- D_i [4], [5], p- D_i [15], [6], θ - D_i [10], δ -semi D_i [9], (δ, p) - D_i [7]) for i = 0, 1, 2.

We shall begin with the definition of m-spaces in order to establish a unified theory of separation axioms D_i , s- D_i , p- D_i , θ - D_i , δ -semi D_i , (δ, p) - D_i for i = 0, 1, 2.

Definition 2.6 A subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X is called an *minimal structure* (briefly m-structure) on X if m satisfies the following properties: $\emptyset \in m$ and $X \in m$.

We call the pair (X, m) an m-space. Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.

Definition 2.7 An minimal structure m on a nonempty set X is said to have property (\mathcal{B}) [20] if the union of any family of subsets belonging to m belongs to m.

Remark 2.1 An m-structure with the property (\mathcal{B}) is called a generalized topology by Lugojan [18]. Császár [12] called a family m a generalized topology if it satisfies $\emptyset \in m$ and has the property (\mathcal{B}). Mashhour et al.

[22] called a family m supratopology if it satisfies $X \in m$ and has the property (\mathcal{B}) . In the present paper, we do not always assume the property (\mathcal{B}) on m-structures.

Remark 2.2 Let (X, τ) be a topological space. Then the families $\tau_{\theta}, \tau_{\delta}, \tau$, SO(X) PO(X), $\alpha(X)$, δ SO(X), δ PO(X) are all m-structures on X with the property (β). It is well-known that $\tau_{\theta}, \tau_{\delta}, \alpha(X)$ are topologies for X and the other are not topologies.

Definition 2.8 Let (X, m) be an m-space and A a subset of X. The m-closure $\mathrm{mCl}(A)$ of A and m-interior $\mathrm{mInt}(A)$ of A are defined in [20] as follows:

- (1) $mCl(A) = \bigcap \{F : A \subset F \text{ and } X F \in m \},$
- (2) $mInt(A) = \bigcup \{U : U \subset A \text{ and } U \in m \}.$

Remark 2.3 Let (X, τ) be a topological space and A a subset of X. If $m = \tau$ (resp. SO(X), PO(X), $\delta SO(X)$, $\delta PO(X)$, $\alpha(X)$, τ_{θ} , τ_{δ}), then we have

- (1) $\operatorname{mCl}(A) = \operatorname{Cl}(A)$ (resp. $\operatorname{sCl}(A)$, $\operatorname{pCl}(A)$, $\operatorname{sCl}_{\delta}(A)$, $\operatorname{pCl}_{\delta}(A)$, $\operatorname{aCl}(A)$, $\operatorname{Cl}_{\theta}(A)$, $\operatorname{Cl}_{\delta}(A)$),
- (2) $\operatorname{mInt}(A) = \operatorname{Int}(A)$ (resp. $\operatorname{sInt}(A)$, $\operatorname{pInt}(A)$, $\operatorname{sInt}_{\delta}(A)$, $\operatorname{pInt}_{\delta}(A)$, $\operatorname{caInt}(A)$, $\operatorname{Int}_{\theta}(A)$, $\operatorname{Int}_{\delta}(A)$).

Lemma 2.1 (Maki [20]) Let (X, m) be an m-space and A, B subsets of X. Then the following properties hold:

- (1) mCl(X A) = X mInt(A) and mInt(X A) = X mCl(A),
- (2) $\mathrm{mCl}(\emptyset) = \emptyset$, $\mathrm{mCl}(X) = X$, $\mathrm{mInt}(\emptyset) = \emptyset$ and $\mathrm{mInt}(X) = X$,
- (3) If $A \subset B$, then $\mathrm{mCl}(A) \subset \mathrm{mCl}(B)$ and $\mathrm{mInt}(A) \subset \mathrm{mInt}(B)$,
- (4) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,
- (5) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2.2 (Popa and Noiri [26]) Let (X, m) be an m-space, A a subset of X and $x \in X$. Then $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Lemma 2.3 (Popa and Noiri [26]) Let (X, m) be an m-space and m have the property (\mathcal{B}) . Then for a subset A of X, the following properties hold:

- (1) $A \in m$ if and only if A = mInt(A),
- (2) A is m-closed if and only if A = mCl(A),
- (3) mCl(A) is m-closed and mInt(A) is m-open.

Definition 2.9 A function $f:(X, m_X) \to (Y, m_Y)$, where (X, m_X) and (Y, m_Y) are m-spaces, is said to be M-continuous [26] if for each $x \in X$ and each $V \in m_Y$ containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$.

Lemma 2.4 (Popa and Noiri [26]) Let (X, m_X) be an m-space and m have the property (\mathcal{B}) . For a function $f:(X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (1) f is M-continuous;
- (2) $f^{-1}(V) \in m_X$ for every $V \in m_Y$;
- (3) $f^{-1}(K)$ is m_X -closed for every m_Y -closed set K of Y.

3 m-D-sets

Definition 3.1 An *m*-space is said to be

- (1) m- T_0 if for any pair of distinct points x, y of X, there exists an m-open set of X containing x but not y or an m-open set of X containing y but not x,
- (2) m- T_1 if for any pair of distinct points x, y of X, there exist an m-open set of X containing x but not y and an m-open set of X containing y but not x,
- (3) m- T_2 [26] if for any pair of distinct points x, y of X, there exist m-open sets U, V of X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 3.2 A subset A of an m-space (X, m) is called an m-D-set if there exist two m-open sets U and V such that $U \neq X$ and A = U - V.

Every m-open set different from X is an m-D-set since we can take as follows: A = U and $V = \emptyset$.

Definition 3.3 An *m*-space is said to be

- (1) m- D_0 if for any pair of distinct points x, y of X, there exists an m-D-set of X containing x but not y or an m-D-set of X containing y but not x,
- (2) m- D_1 if for any pair of distinct points x, y of X, there exist an m-D-set of X containing x but not y and an m-D-set of X containing y but not x,
- (3) m- D_2 if for any pair of distinct points x, y of X, there exist m-D-sets U, V of X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Remark 3.1 Let (X, τ) be a topological space. If $m = \tau$ (resp. SO(X), PO(X), τ_{θ} , δ SO(X), δ PO(X)), then we obtain the definitions of separation axioms D_i [28] (resp. s- D_i [4], [5], p- D_i [15], [6], θ - D_i [10], δ - $semiD_i$ [9], (δ, p) - D_i [7]) for i = 0, 1, 2.

Remark 3.2 Let (X, m) be an m-space. By Definitions 3.1 and 3.3, we have the following diagram:

$$\begin{array}{ccc} m\text{-}T_2 \Rightarrow m\text{-}T_1 \Rightarrow m\text{-}T_0 \\ \Downarrow & \Downarrow & \Downarrow \\ m\text{-}D_2 \Rightarrow m\text{-}D_1 \Rightarrow m\text{-}D_0 \end{array}$$

First, we obtain characterizations of m- T_0 -spaces and m- T_1 -spaces.

Theorem 3.1 An m-space (X, m) is m- T_0 if and only if for any pair of distinct points $x, y \in X$, $mCl(\{x\}) \neq mCl(\{y\})$.

Proof. Necessity. Let x, y be distinct points of X. There exists (1) an m-open set U such that $x \in U$ and $y \notin U$ or (2) an m-open set V such that $y \in V$ and $x \notin V$. In case (1), $x \notin \mathrm{mCl}(\{y\})$ and hence $\mathrm{mCl}(\{x\}) \neq \mathrm{mCl}(\{y\})$. In case (2), $y \notin \mathrm{mCl}(\{x\})$ and hence $\mathrm{mCl}(\{x\}) \neq \mathrm{mCl}(\{y\})$.

Sufficiency. Suppose that $x, y \in X, x \neq y$ and $\mathrm{mCl}(\{x\}) \neq \mathrm{mCl}(\{y\})$. Let z be a point of X such that $z \in \mathrm{mCl}(\{x\})$ and $z \notin \mathrm{mCl}(\{y\})$. Since $z \notin \mathrm{mCl}(\{y\})$, there exists $V \in m$ such that $z \in V$ and $y \notin V$. Since $z \in \mathrm{mCl}(\{x\})$, we have $x \in V$. In case that z is a point of X such that $z \in \mathrm{mCl}(\{y\})$ and $z \notin \mathrm{mCl}(\{x\})$, we obtain an m-open set U such that $x \notin U$ and $y \in U$. This shows that (X, m) is m- T_0 .

Theorem 3.2 Let (X, m) be an m-space and m have the property (\mathcal{B}) . Then (X, m) is m- T_1 if and only if for each point $x \in X$, the singleton $\{x\}$ is m-closed.

Proof. Necessity. Suppose that (X, m) is m- T_1 and x be any point of X. For each point $y \in X - \{x\}$, there exists an m-open set V_y such that $y \in V_y$ and $x \notin V_y$; hence $y \in V_y \subset X - \{x\}$. Therefore, we obtain $X - \{x\} = \bigcup_{y \in X - \{x\}} V_y$ and $\bigcup_{y \in X - \{x\}} V_y$ is an m-open set and hence $\{x\}$ is m-closed.

Sufficiency. Let x, y be any distinct points of X. Then $y \in X - \{x\}$ and $X - \{x\}$ is an m-open set containing y. Similarly, $X - \{y\}$ is an m-open set containing x. This shows that (X, m) is m- T_1 .

Definition 3.4 An *m*-space (X, m) is said to be *m*-symmetric if for points x, y of $X, x \in \mathrm{mCl}(\{y\})$ implies that $y \in \mathrm{mCl}(\{x\})$.

Theorem 3.3 Let (X, m) be an m-space and m have the property (\mathcal{B}) . For an m-space (X, m), the following properties are equivalent:

- (1) (X, m) is m-symmetric and m- T_0 ;
- (2) (X, m) is $m-T_1$.

Proof. (2) \Rightarrow (1): This is obvious by Theorem 3.2.

(1) \Rightarrow (2): Let x, y be distinct points of X. Since (X, m) is m- T_0 , we may assume that $x \in U$ and $y \notin U$ for some $U \in m$. Then $x \notin \mathrm{mCl}(\{y\})$ and hence $y \notin \mathrm{mCl}(\{x\})$. Therefore, there exists $V \in m$ such that $y \in V$ and $x \notin V$. This shows that (X, m) is m- T_1 .

Theorem 3.4 An m-space (X, m) is m-D₀ if and only if it is m-T₀.

Proof. By the definitions, it is obvious that m- T_0 implies m- D_0 . We shall show that m- D_0 implies m- T_0 . Suppose that (X, m) is m- D_0 and x and y are distinct points of X. Then at least one of these points, say x, belongs to an m-D-open set A and $y \notin A$. Let A = U - V, where $U \neq X$ and V, U are m-open sets. Since $y \notin A$, we have two cases: (1) $y \notin U$; (2) $y \in U$ and $y \in V$.

In case (1), we have $x \in U$, $y \notin U$ and $U \in m$.

In case (2), we have $y \in V$, $x \notin V$ and $V \in m$. This shows that (X, m) is m- T_0 .

Remark 3.3 (1) If (X, τ) is a topological space and $m = \tau$ (resp. SO(X), PO(X)), then the result established in Theorem 1 of [28] (resp. Theorem 2.1 of [4] and Theorem 2.5 of [5], Theorem 2.2 of [6] and Theorem 3.1 of [15]) is obtained by Theorem 3.4.

(2) It follows from examples in [28], [4] and [6] that the separation axiom m- D_1 is strictly between m- T_0 and m- T_1 .

Theorem 3.5 Let (X, m) be an m-space and m have the property (\mathcal{B}) . Then (X, m) is m- D_1 if and only if it is m- D_2 .

Proof. Necessity. Suppose that (X, m) is m- D_1 and x and y are distinct points of X. There exist two m-D-sets A_1 and A_2 such that

 $x \in A_1, y \notin A_1$ and $y \in A_2, x \notin A_2$. Let $A_1 = U_1 - V_1$ and $A_2 = U_2 - V_2$, where $U_i, V_i \in m$ for $i = 1, 2, U_1 \neq X$ and $U_2 \neq X$. Since $x \notin A_2$, there are two cases: (1) $x \notin U_2$ or (2) $x \in U_2$ and $x \in V_2$.

(1) $x \notin U_2$.

Since $y \notin A_1$, there are two cases: $y \notin U_1$ or $y \in U_1$ and $y \in V_1$.

 $(1_a) \ y \notin U_1.$

Since $x \in A_1 = U_1 - V_1$ and $x \notin U_2$, we have $x \in U_1 - (V_1 \cup U_2)$. Since $y \notin U_1$ and $y \in A_2 = U_2 - V_2$, we have $y \in U_2 - (V_2 \cup U_1)$. Since m has the property (\mathcal{B}) , $V_1 \cup U_2$ and $V_2 \cup U_1$ are m-open sets. Moreover, $U_1 \neq X$ and $U_2 \neq X$ and hence $U_1 - (V_1 \cup U_2)$ and $U_2 - (V_2 \cup U_1)$ are m-D-sets and they are disjoint.

 (1_b) $y \in U_1$ and $y \in V_1$.

We have $x \in A_1 = U_1 - V_1, y \in V_1$ and $(U_1 - V_1) \cap V_1 = \emptyset$. Moreover, $(U_1 - V_1)$ and V_1 are m-D-sets.

(2) $x \in U_2$ and $x \in V_2$.

Then we have $x \in V_2, y \in A_2 = U_2 - V_2$. Moreover, V_2 and $U_2 - V_2$ are disjoint m-D-sets. Consequently, (X, m) is m- D_2 .

Sufficiency. This is obvious by the definitions.

Remark 3.4 If (X, τ) is a topological space and $m = \tau$ (resp. SO(X), PO(X)), then the result established in Theorem 2 of [28] (resp. Theorem 3.3 of [4] and Theorem 2.5 of [5], Theorem 2.2 of [6] and Theorem 3.1 of [15]) is obtained by Theorem 3.5.

Corollary 3.1 Let (X, m) be a m-symmetric m-space and m have the property (\mathcal{B}) . For an m-space (X, m), the following axioms are equivalent: m- T_1 , m- T_0 , m- D_2 , m- D_1 and m- D_0 .

Proof. This is an immediate consequence of Theorems 3.3, 3.4 and 3.5.

4 Properties of axiom m- D_1

Definition 4.1 Let (X, m) be an m-space. A point x of X is called an mcc point if X is the unique m-open set that contains x.

Remark 4.1 If (X, τ) is a topological space and $m = \tau$ (resp. SO(X), PO(X)), then an mcc point is called a c.c. point [28] (resp. s-c.c point [4] and sc.c point [5], pcc point [15] and pc.c point [6]).

Theorem 4.1 If an m-space (X, m) is m-T₀, then there exists at most one mcc point.

Proof. Suppose that (X, m) is m- T_0 and distinct points x, y are mcc points. Since (X, m) is m- T_0 , there exists an m-open set U such that U contains one but not contains the other, say, $x \in U$ and $y \notin U$. Then $y \notin U$ and $U \neq X$. This shows that x is not an mcc point.

Theorem 4.2 An m- T_0 m-space (X, m) is m- D_1 if and only if it does not have any mcc point.

Proof. Necessity. Suppose that (X, m) is m- D_1 . Each point $x \in X$ belongs to an m-D-set A = U - V, where U is an m-open set and $U \neq X$. Therefore, x is not an mcc point.

Sufficiency. Suppose that (X, m) is m- T_0 and it does not have any mcc point. Let x, y be any pair of distinct points. Then we may assume that there exists an m-open set U such that $x \in U$ and $y \notin U$. Since y is not an mcc point, there exists an m-open set V such that $y \in V$ and $V \neq X$. Now set B = V - U, then B is an m-D- set such that $y \in B$ and $x \notin B$. Therefore, (X, m) is m- D_1 .

Remark 4.2 If (X, τ) is a topological space and $m = \tau$ (resp. SO(X), PO(X)), then the result established in Theorem 4 of [28] (resp. Theorem 3.2 of [4] and Theorem 2.10 of [5], Theorem 2.5 of [6] and Theorem 3.2 of [15]) is obtained by Theorem 4.2.

Theorem 4.3 Let $f:(X,m_X) \to (Y,m_Y)$ be an M-continuous surjection and m_X satisfy the property (\mathcal{B}) . If B is an m-D-set of (Y,m_Y) , then $f^{-1}(B)$ is an m-D-set of (X,m_X) .

Proof. Let B be an m-D-set of (Y, m_Y) . Then there exist m_Y -open sets U and V such that B = U - V and $U \neq Y$. Since f is M-continuous, by Lemma 2.4 $f^{-1}(U)$ and $f^{-1}(V)$ are m_X -open sets. Since f is surjective, $f^{-1}(U) \neq X$ and $f^{-1}(B) = f^{-1}(U) - f^{-1}(V)$. Therefore, $f^{-1}(B)$ is an m-D-set of (X, m_X) .

Remark 4.3 If (X, τ) is a topological space and m = SO(X) (resp. PO(X)), then the result established in Theorem 2.18 of [5] (resp. Theorem 2.11 of [6] and Theorem 5.1 of [15]) is obtained by Theorem 4.3.

Theorem 4.4 Let $f:(X, m_X) \to (Y, m_Y)$ be an M-continuous bijection and m_X satisfy the property (\mathcal{B}) . If (Y, m_Y) is m- D_1 , then (X, m_X) is m- D_1 .

Proof. Suppose that (Y, m_Y) is m- D_1 . Let x and y be any pair of distinct points of X. Since f is injective and (Y, m_Y) is m- D_1 , there exist m-D-sets B_x and B_y containing f(x) and f(y), respectively, such that $f(y) \notin B_x$ and $f(x) \notin B_y$. By Theorem 4.3, $f^{-1}(B_x)$ and $f^{-1}(B_y)$ are m-D-sets containing x and y, respectively, such that $y \notin f^{-1}(B_x)$ and $x \notin f^{-1}(B_y)$. This shows that (X, m_X) is m- D_1 .

Remark 4.4 If (X, τ) is a topological space and m = SO(X) (resp. PO(X)), then the result established in Theorem 2.19 of [5] (resp. Theorem 2.12 of [6] and Theorem 5.3 of [15]) is obtained by Theorem 4.4.

Theorem 4.5 An m-space (X, m_X) , where m_X satisfies the property (\mathcal{B}) , is m- D_1 if and only if, for each pair of distinct points x, y of X, there exists an M-continuous surjection f of (X, m_X) onto an m- D_1 m-space (Y, m_Y) such that $f(x) \neq f(y)$.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points of X. By hypothesis, there exists an M-continuous surjection f of (X, m_X) onto an m- D_1 m-space (Y, m_Y) such that $f(x) \neq f(y)$. Since (Y, m_Y) is m- D_1 , there exist m-D-sets B_x and B_y containing f(x) and f(y), respectively, such that $f(y) \notin B_x$ and $f(x) \notin B_y$. By Theorem 4.3, $f^{-1}(B_x)$ and $f^{-1}(B_y)$ are m-D-sets containing x and y, respectively, such that $y \notin f^{-1}(B_x)$ and $x \notin f^{-1}(B_y)$. This shows that (X, m_X) is m- D_1 .

Remark 4.5 If (X, τ) is a topological space and m = SO(X) (resp. PO(X)), then the result established in Theorem 2.20 of [5] (resp. Theorem 2.13 of [6] and Theorem 5.4 of [15]) is obtained by Theorem 4.5.

5 Applications

We recall some modified open sets: semi- θ -open, b-open, β -open and semi-preopen.

Let A be a subset of a topological space (X, τ) . The semi- θ -closure of A, $\mathrm{sCl}_{\theta}(A)$, is defined by the set of the points such that $A \cap \mathrm{sCl}(U) \neq \emptyset$ for every semi-open set U containing x. A subset A is said to be semi- θ -closed [13] if $A = \mathrm{sCl}_{\theta}(A)$. The complement of a semi- θ -closed set is said to be $semi-\theta$ -open.

Definition 5.1 Let (X, τ) be a topological space. A subset A is said to be

- (1) β -open [1] or semi-preopen [2] if $A \subset Cl(Int(Cl(A)))$,
- (2) b-open [3] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$.

The family of all β -open (resp. b-open, semi- θ -open) sets in a topological space (X, τ) is denoted by $\beta(X)$ (resp. BO(X), S θ O(X)).

Definition 5.2 The complement of β -open (resp. b-open) sets in a topological space (X, τ) is said to be β -closed [1] (resp. b-closed [3],).

Definition 5.3 The intersection of all β -closed (resp. b-closed) sets of (X, τ) containing a subset A is called the β -closure [1] (resp. b-closure [3]) and is denoted by $\beta \text{Cl}(A)$ (resp. bCl(A)).

Definition 5.4 The union of all β -open (resp. b-open, semi- θ -open) sets contained in a subset A of a topological space (X, τ) is called the β -interior (resp. b-interior, semi- θ -interior) of A and is denoted by β Int(A) (resp. bInt(A), sInt(A)).

Let (X, τ) be a topological space. The families $\beta(X)$, BO(X), $S\ThetaO(X)$, τ_{δ} , τ^{α} are all *m*-structures with the property (\mathcal{B}) . If we put $m = \beta(X)$ (resp. BO(X), $S\ThetaO(X)$, τ_{δ} , τ^{α}) then the pair (X, m) is an *m*-space, where *m* has the property (\mathcal{B}) . Therefore, for each family $\beta(X)$, BO(X), $S\ThetaO(X)$, τ_{δ} , τ^{α} , we can apply the results established in Sections 3-5.

Remark 5.1 For τ_{θ} , $\delta PO(X)$ and $\delta SO(X)$, the analogous results to ones established in Sections 3-5 are obtained in [10], [7] and [9], respectively.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
- [3] D. Andrijević, On b-open sets, Mat. Vesnik 48 (1996), 53-64.
- [4] D. Borşan, On semi-separation axioms, Research Seminars, Seminar of Mathematical Analysis, Preprints 4 (1986), 107–114. "Babeş-Bolyai" Univ., Fac. of Math.
- [5] M. Caldas, A separation axiom between semi-T₀ and semi-T₁, Mem. Fac. Sci. Kochi Univ. Ser. Math. 18 (1997), 37-42.
- [6] M. Caldas, A separation axiom between pre- T_0 and pre- T_1 , East-West J. Math. 3 (2001), 171–177.
- [7] M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of δ -preopen sets in topological spaces (submitted).
- [8] M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, $On(\Lambda, \theta)$ -closed sets (submitted).
- [9] M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, More on δ semiopen sets (submitted).
- [10] M. Caldas, S. Jafari and T. Noiri, Weak separation axioms via Veličko's θ -open sets and θ -closure operator (submitted).
- [11] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99–112.
- [12] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. **96** (2002), 351–357.
- [13] G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions, Suppl. Rend. Circ. Mat. Palermo (2) 18 (1988), 255–273.

- [14] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 27(75) (1983), 311–315.
- [15] M. Jafari, On a weak separation axiom, Far East J. Math. Sci. 3 (2001), 779-787.
- [16] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc. 82 (1990), 415–422.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [18] S. Lugojan, Generalized topology, Stud. Cerc. Mat. 34 (1982), 348–360.
- [19] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395–402.
- [20] H. Maki, On generalizing semi-open and preopen sets, Meeting on Topological spaces Theory and its Applications, August, 1996, Yatsushiro Coll. Tech., pp. 13–18.
- [21] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [22] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological spaces, Indian J. Pure Appl. Math. 14 (1983), 502-510.
- [23] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. 41 (1983), 213–218.
- [24] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [25] J. H. Park, Y. Lee and M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math. 19 (1997), 59–67.

- [26] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos"-Galati, Ser. Mat. Fiz. Mec. Teor. Fasc. II 18(23) (2000), 31–41.
- [27] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica 21 (1993), 375–366.
- [28] J. Tong, A separation axiom between T_0 and T_1 , Ann. Soc. Sci. Bruxelles **96** (1982), 85–90.
- [29] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl.(2) 78 (1968), 102–118.

Takashi NOIRI Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 JAPAN e-mail: noiri@as.yatsushiro-nct.ac.jp

Valeriu POPA
Department of Mathematics,
University of Bacău,
5500 Bacău, RUMANIA
e-mail: vpopa@ub.ro