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FREE DAMPED VIBRATIONS OF VISCOELASTIC
MATERIALS
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Abstract

Free damper vibrations of viscoelastic rod,beam,plate and shell
reducible to the solution of a certain integro-differential equation. Full
solution of this equation for the kernel of relaxation in the form of sum of
N exponential functions with different negative indexes is constructed in the
present article.lteration processes for calculating frequency and damping
coefficient, which are the real and imaginary parts of two complex-
conjugated roots of frequency equation, are given.In the case of positive
relaxed module, the fact that the frequency equation has N futher real
negative poles, in addition to the two complex poles obtained above, is
proved. Analysis of obtained solutions and their comparisons with results
available in literature are performed,
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1.Introduction

The theory of linear viscoelasticity finds numerous technical applications, -
connected with studies of the creeps of metals, plastics, concrete, rock,
polymers, composites and other solids. This theory has ‘extensively
developed in the last half-century. The original methods of solutions are
worked out to solve quasistatic and dynamic problems. In [1] method of
averaging that belongs to Bogoliubov is applied to vibration problems of
viscoelasticity. According to method of averaging,the viscous strength of
material is small enough in comparison with elastic strength. The result
obtained in [1] is found in [2] by Laplace transform method.The problem of
free vibrations of viscoelastic system,with single degree of freedom has
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been analysed in[3] by method of complex modules.Here the ratio of
imaginary part of the complex module to its real part is considered to be
small enough and beginning from the second, all powers of this ratio are
neglected. Free vibrations of plates are investigated in [4]. There are many
works devoted to study of vibrations of viscoelastic bodies with specific
kernels and models. The Voigt,Kelvin, Maxwell models and standard model
of linear viscoelastic material are used in [5-8]. Kernels in the form of the
sum of exponential functions with negative indices are often used.The
problems are solved by the method of Laplace integral transform,but the
inverses are found by using Mellin’s formula. The knowledge of poles of
integrands is assumed.Using this method Struik [9] studied a problem of
free damped vibrations of linear viscoelastic materials and used the result
for the determination of mechanical properties of materials.

2.5tatement of Problem

Equations of transient vibrations of flexible string or longitudinal
vibrations of homogeneous rod, transient vibrations of beam and plate of
viscoelastic material are

A*w ' A*w QO m O*w
g e Gade s e T, @
'w ! A'w moiw Q
~ ——S;[I“(t~z')~é}c—rdt+-b— 7T = (2.2)
t 2
2 2 2 ﬂé w _.__Q._.
A w-—gjflj—r)A wdr+D PR (2.3)

where w is displacement, £ is the modulus of instantaneous elasticity, Q is
the transverse load, m is the mass,b and D are flexural rigidites, &['(¢) is
the kernel of relaxation, & is a positive parameter which we may put equal
to one at the end of the operation.

We will consider a viscoelastic solid for which the kernel of relaxation
&l'(t) is a positive function which satisfies the condition [1]

j el(r)dr <<1 (2.4)

4

for any t.For this reason we will assume ¢ to be a small positive parameter.
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To the equations (2.1)-(2.3) it is necessary to connect apptropriate
boundary and initial conditions.The initial conditions, appropriate to an
initial stress-free state of rest, may be given by

a'v .
E:VV}(x) fort =0, (2.5)

where W,(x) and W, (x) are given functions.As the boundary conditions,
for example,we may put

ow
=0, —=0,
w=0, —
for the clamped edge, and
Fw
w=0, i 0,

for the simply supported edge.

Let the load Q(x,¢) for simply supported beam be represented by the
Fourier series onx

> k
O(x,t)=m Zgok () sin—“;x,
k=1

where / is the length of the beam.A solution of equation (2.2) is assumed to
be in the form

- ko
w(x,t)= 2. T, (B)sin=. (2.6)
k=1
For the unknown functions 7, (1) we obtain an integro-differential equation
!
T+ RT, = el [Tt - )T, (2)de + (1), 2.7)

where

nrw., b
=(—" 1/“ =12,...
ﬂ'll ( ] ) nT(n ’27 )

are the frequencies of elastic vibrations.

Let the functions W, (x) and W, (x) be represented by the Fourier series
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Wy (x)=>.T, sin—l%@, W (x)=> Ty smﬁ?—.
k=1 k=1
Using (2.5) and (2.6) we find the initial conditions for the equation (2.7)
L0 =T,, L(O0)=T,.

Exactly the same method without any alterations applies to vibrations of
plates, shells,and arbitrary three-dimensional bodies if the eigenfunctions
and eigenvalues of the elasticity problem are known.Using the method of
separation of variables or Bubnov-Galerkin method,replacing differential
operators with respect to space coordinates with finite differences and many
other methods, the dynamical system of viscoelasticity can be reduced to the
equations of form (2.7).

3.Solution by Laplace Transform.Determination of Complex Roots

The equation

!
T4 2T = e [T(t-0)T(2)dr , >0 3.1)
will be solved for the folloving initial conditions

TOy=1, T'0)=T. (3.2)
Using the Laplace transform we obtain the following image of the solution
of this problem
_ pl, + 1
PR+ A =T (p)

T(p) (3.3)
where p is the complex parameter of transformation.The function T(p)

and the image of kernel of relaxationI'(p)are analytic in the right half-
plane Re p > 0.

Assume that the Laplace transform T'(p) is an analytic function in the
whole of the complex p -plane except at isolated singular points.The inverse

transformation of function (3.3) can be found by using the well-known
Mellin formula
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1 c+io (pj:) +]~;)epl
27 o pt+ AP = eAT(p) P

T(t) = (3.4)
here the integration is carried out in the plane of complex variable p along
an infinite straight line parallel to the imaginary axis and situated so that all
singular points of the function 7'(p) are located to the left of this straight

line. The calculation of this integral is usually accomplished through the use
of the residue theory For this reason it is necessary to know the poles and
the branch points of integrand considered before being analytically
continued to the left-half p-plane.Poles are roots of the equation

PP+ A —eXT(p) =0. (3.5)
For ¢ =0 the equation (3.5) has two solutions p, =il and p, =—il.
Let —a *if be the roots of the equation (3.5). Substituting p = —a +if to
(3.5) and splitting in real and imaginary parts,gives

“ 2 2 p2 @
J.emr(f) COSﬂTdT :—q—'ﬁ ﬂ , J‘earl—‘(r) Sin ﬁfd’[’ _ 2(;"28 '
° 0 &.

Thus the equation (3.5) is equivalent to the system of two equations (3.6).
Let us represent (3.3) in the form

(3.6)

(o) - pL,+T pT, +1,
p PP —elT (pra) + B - (T 20p+at =2y +y%)
_ pT+ T 1
T (pta)+ B 1-B(p)’ G0
where

eN'T +2ap+a’ + p2 - X

(p+a) +f°
In the half-plane Rep >0 we have lB_ ( p)l < 1,thus (3.7) may be expanded
into geometrical series

B(p)=

T(p)=A(p)(1+B +B2+..), (3.8)

where
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pT, +1

A(p) = Gra) +
The inverse transforms of A( p) is
A(t) =e™[T, cos pt + e ,3 al, 2-sin ft] = A,e™* cos(ft ~ ). (3.9)
Using (3.6) the function B(r) obtained as
B(r)="2- jr(z +5)e® sin fsds (3.10)
Remark. If we know the original
1 Béfz) =), (3.11)

SJrom (3.8) we find required solution of the problem (3.1),(3.2) as
!
T(t) = A(t) + [ A(t - D)D(z)dw. (3.12)

o

According to (3.7) equation (3.5) may be written as

PP —elT(p)=[(p+a)’ +FI1-B(p)]=0  (3.13)
The equation 1— B(p) = 0 has only real roots and may be solved easily by
comparison with (3.5).

Consider the kernel

N
T(t) =D q.e™, (3.14)
k=1

where g, >0,m, >0 (k=12,..,N) and 7 <, <...<n,. The equations
(3.6) for obtaining the values « and f gives us

& N i g9, (1, — ) “a2+ﬂ2—ﬂ2

= 3.15
& —a) + - ey + R (3.15)
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The iterations

e & dx

al = s 2 7

Y G a ) A

N
4, M

By =430 — e

b k=l (nk - an+1)2 +ﬂ112
n=012,.,0,=0,4 =i, (3.16)

define o and S

J=1 Wj
2
X g, & Yq;(m+n)) 3(& g,
2_ g2 o2 ﬂ_@_&_zxz }"%Uk[ , J 22 VN
/ ;Zf Vi =R JZ v, 4 ,2:7%

Using (3.14) from (3.10) we found

N
B(t) =D ec,e™,
=1
where
_ Aqy
CT R - )
From the first of the Eq.(3.15) we get

N
> e, =20 (3.17)
k=1

The row-sum norms of derivatives of iteration vector-function with
respect to @ and f for (3.16) are estimated as below

e 2 | e Zc g3 PEL S
k ﬂ -

"2 i +(n, —a) } k=1

C,
2847 ¢ ,32 + (1, “05)

e, 2B -a) | & X a
max{=— 2.,¢ ST=2.C ==,

2" ,5"2 +(m, — a)’| " 284 B

So the iteration process (3.16) is convergent to a unique limit if 3a/8 <1,
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Lemma .Let the kernel of relaxation be given as (3.14) and the inequality
(2.4) be valid. Then the equation

1-B(p) = (3.18)

=1 Pt ‘7k
has N real negative roots p, =—p,(p, >0k=12,...,N),which may be
calculated by the iteration procedure

8C

—— (D + 1) 1 =0,1.2,.. (3.19)

N
Pinwr =N Y EC, + 2 Tt
771

J=1

N
Pro = —Th + 624, Z' = (k=1.2,..N).

U
Jek

Proof.The function1~ B(p) is analytic in the entire p — plane,except at
the simple poles — 7, (k = 1,2,..., N) on the negative part of the real axis.
The function 1- B(p)tends to +o as p—» -7, —0 and tends to—oo
for p > ~n, +0.In the origin we have

- Y g,
1-B(O)=1-) —>0.
k=t Tl
Indeed, we have from (2.4)

> (3.20)

It is easy to see that B(w) = 0.Thus ¢, ~ ¢, and from (3.20)

N
3 EE o 3.21)
k=1 Ty
follows.The zeros of the function 1- B(p)are located between the
poles,hence
~ T < =Py <—Mypyrk = 1,2,...,{N; 7y = 0.
The equation (3.18) may be written as

(3.22)




Here we define

Cé‘

p=-n +é, + ——*-M(p n) (3.23)
T 4 ; P+, /3

and we form the iteration process (3.19).From (3.22) we may write the

equality
i. ;& 1 c, &
=t P T = Px .

Then the derivative of iteration function in (3.23) is estimated as below

¢ Lo e L, N
Z (76(77} nk)f Z j_ +>..4 o R/ |:: 1- Cig _chg =P
S m-p)| |G- 4G (77, Al | n-a &7 -0
= 1= (p, ~ p)Z ——
k k (77!

Thus the iterauon process (3.19) is convergent .The proof of the lemma is
now complete.

Inverse transform of B(p)/(1-B(p)) is found by using the residues at
poles — p, (k=12,...,N):

N
D(t) = Z ze ™ (3.24)
=1

where
"_’, c;& -
» | ,k=12,...,N,
Z (1, =1,

As we see y, >0 and from the condition

B
D(0) = lim-L= = B(0) = 2¢
pool—B

we have
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®O(0) = i;(k =2a. (3.25)

The number — p, is the real root of equation (3.5) for the kernel (3.14),thus

N .
pl+ A ~£/1"‘Z——gi—-=0;k== 1,2,...,N (3.26)
=t 1~ Py
are identities.Moreover,from equality
— 1
1+ ® = —=
TPTICB
the identity
N Z
1+ )~ =0k =12,..,N. (3.27)
j=1 Py~ 1

is obtained.Using (3.9) and (3.24) we find

(1) = |'T Z"k(" l)jle“‘”cosﬁt+

pac 02 a)’ +
T-al, 3 Zi } .
%t ) - L, —)) le™ sin S +
[ ; X a7 A A
> A Y (3.28)
= (p—a) +
For the sake of the conciseness, let
Z XL -pT)
ﬂ +(po, — a)z ’
T —aTl X 1
B = b [T+ — (T, L, ), ~ )]
B Zﬁ2+<pk - a)? g '
. (I, -pT)
H /32 +(pk_a)2
Then (3.28) may be written as
‘ v
T(t)=E,e™ cosft+ E,e™ sinft + Y E, e (3.29)
k=1
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Theorem .Let the conditions of Lemma be valid. Then the function T(t)
defined by the formula (3.29) is a solution of the problem (3.1),(3.2).

Proof.The derivatives of (3.29) are
N
T(H) = B¢ (—arcos & — fsin &) + Eye™ (—asin fE + feos ) - D _Eype™, (3.30)
k=1
T'(t) = E,e”™ (a” cos ft + 2afsin fit — B2 cos ft) + E,e™ (o sin ft — 2B cos it —
— Brsinfit) + . By ple ™. (3.31)

Now we calculate

’ v, (B, ~a)- BB
el J‘T(t~r)T(r)dr=g/122q{ (1 =) = L o™ cos fit +

k=1 ,BZ +(n, _a)z
E,(n, —a)+ pE,

p+(n, —a)
ot - IBEz"(ﬂk—a)El .y ul E3j —pt i
e sin ff +— e 4 Z— —(e S e ) (3.32)
B+ —a) = e = Py

Substituting (3.29),(3.31) and (3.32) into equation (3.1)and using
(3.15),(3.26) and (3.27) we see that the function (3.29) satisfies (3.1).From
(3.28) it follows that T(0) = T,,and from (3.30) we find T'(0) = 7, using
(3.25).

The first terms in (3.29) describes the damped vibrations process,and the
last term shows the transient part of solution.As it follows from (3.29),the
transient part of the solution is proportional to & (or to &).

Solution for the exponential kernel (which describes various tree-
parametric models,( particularly in Maxwell and Voigt models) is obtained
from (3.29) when N =1.This solutions is well-known in the literature [3,5-
8].In all of these studies ¢ and f were assumed to be determinable from
(3.5).There exist no formulae obtained similar to (3.16).

If in the formulas for o and S we neglect all terms begining from the
second and third respectively,i.e. take into account only the terms linear in
& ,we will get the result [1],for the kernel (3.14), obtained by Bogolyubov’s
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averaging method.The approach [3,p.61] leads to the same result,obtained
by the method of complex modules,where the ratio of the imaginary part of
complex module to its real part is considered small enough and all of its
powers over the first are neglected.
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