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FREE DAMPED \7l[BMTIONS OF VISGOELASTIIEG 
MATEWALS 

Abstract 
Free damper vibrations of viscoelastic rod,beam,plate and shell 

reducible to the solution of a certain integro-differential equation. Full 
solution of this equation for the kernel of relaxation in the form of sum of 
N exponential f~lnctions with different negative indexes is constritcted in the 
present ai-tic1e.lteration processes for calcrrlating frequency and damping 
coefficient, which are the real and iinaginaiy parts of two complex- 
conjugated roots of frequency equation, are givcn.In the case of positive 
relaxed module, the fact that the frequency equation has N futher real 
negative poles, in addition to the two complex poles obtained above, is 
proved. Analysis of obtainetl solutions and their con~parisons with results 
available in literature are performed. 
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The theory of linear viscoekasticity finds nurrierous technical applications, 
connected with studies of the: creeps of metals, plastics, concrete, rock, 
polymers, composites and other solids, This theory has 'extensively 
developed in the Bast half-century.Tl~e original methods of solutions are 
worked out to solve quasistatic and dynamic problems. I11 [I] method of 
averaging that belongs to Bogoliubov is applied to vibration problems of 
viscoelastic.ity. According to inethod of averaging,the -viscous strength of 
material is shall enough in comparison wit11 elastic strength. The result 
obtained in [I] is found in [2] by Laplace transform metlrod.The problem of 
free vibrations of viscoelastic systenn,with single degree of freedom has 



been analysed in[3] by method of complex modules.Here the ratio of 
imaginary part of the complex module to its real part is considered to be 
sniall enough and beginning from the second, all powers of this ratio are 
neglected. Free vibrations of plates are investi-gated in [ L C ] .  There are many 
works devoted to study of vibrations of viscoelastic bodies with specific 
kernels and models. The Voigt,Kelvin, Maxwell models and standard model 
of linear viscoelastic material are used in [5-81. Kernels in the form of the 
sun1 of exponential functions with negative indices are often tlsed.The 
problenls are solved by the rrlethod of Laplace integral transform,but the 
inverses are found by using Ikfellin's formula, The knowledge of poles of 
integrands is assurned.Using this method Stnlik [9] studied a problem of 
free damped vibrations of linear viscoelastic materials and used the result 
for the determination of mechanical propei.ties of materials. 

Eq~lations of transient vibrations of flexible string or longitudinal 
vibrations of homogeneous sod, transient vibrations of beam and plate of 
viscoelastic material are 

where w is displacement, E is the modulus of instantaneous elasticity, Q is 
the transverse load, nz is the mass, b and D are flexural rigidites, $(t )  is 
the ke~nel of relaxation, E is a positive parameter which we may put equal 
to one at the end of the operation. 

We will consider a viscc~elastic solid for which the kernel of relaxation 
X ( t )  is a positive function which satisfies the condition [I]  I 

for any t.For this season we will assurne E to be a small positive parameter. 



To the equations (2.1)-(2.3) it is necessary to connect appropriate 
boundary and initial cond.itions.The initial conditions, appropriate to an 
initial stress-free state of rest, may be given by 

ritv 
w=Wo(x), -=  a T ( X )  for t = 0 ,  

where W,(x) and 6 (x) are given functions.As the boundary conditions, 
for examnple,we may put 

for the clamped edge, and 

for the simply supported edge;. 

Let the loadQ(x,t)for simply supported beam be represented by the 
Fourier series on x 

m knx 
Q(x, t )  - rn (pk (t) sill- 

k=l I '  
where I is the length of the beam.A solution of equation (2.2) is assumed to 
be in the form 

m km 
W ( X ,  t) = (t) sin-. 

k=l 1 
For the unlu-iown fbnctions Tk ( t )  we obtain an integro-differential equation 

where 

A,, = = 1,2,'*.) 
1 

are the frequencies of elastic vibrations. 

Let the functions Wo (x) and T/&; (x) be represented by the Fourier series 



m k m  rn k m  6 (s) = x q, sin ,, W , ( X ) = ~ T , ,  sin-. I 
k = l  k=l 

Using (2.5) and (2.6) we find. the initial conditions for the equation (2.7) 

T , ( O ) = T , ,  T;(O)=T,,. 
Exactly the same method without any altera1,ions applies to vibrations of 

plates, shells,artd arbitrary three-dimensional bodies if the eigenfunctions 
and eigenval~ies of the elasticity problem are known.Using the method of 
separation of variables or Bubnov-Galerkin rnethod,replacing differential 
operators with respect to space coordillates with finite differences and many 
other methods, the dynamical system of viscoelasticity can be reduced to the 
equations of form (2.7). 

3.$colution by 1,aplace Tuansform.Deterrnination of Complex Roots 

The equation 
I 

T '  + PT := EL' jr(t - T ) T ( I - ) d ~  , t > o (3.1) 
0 

will be solved for the folloving initial conditions 

T(O)=T,, T7(0)==q.  (3 -2) 

Using the Laplace transform we obtain the following image of the solution 
of this problem 

where p Is the complex parameter of transforn2.ation.The function T(p) 

and the inlage of kernel of relaxationT(p) are analytic in the right half- 
plane Re p =. 0. 

Assume that the Laplace transform T(p) is an analytic function in the 
whole of the coimplex p -plane except at isolated singular pointsOrrhe inverse 
transformation of function (.3.3) can be found by using the well-known 
Mellin fonnula 



here the integration is carried out in the plane of complex variablep along 
an infinite straight line parallel to the jmagina~y axis and situated so that all 
singular points of the function T ( p )  are located to the left of this straight 
1ine.The calculation of this integral is usually accomplished through the use 
of t,he residue theory.For this I-eason it is nece,ssaly to know the poles and 
the branch points of integrand considered before being analytically 
continued to the left-half p -pla.ne.Poles are roots of the equation 

p" + - E A ~ ? ; ( ~ )  = 0. (3.5)  

For E = 0 the equation (3.5) has two solutions p, = i A  and p 2  = -iA . 
Let -- a t. ip be the roots of the equation (3 .5)  Substituting p = -a + ip to 

(3.5)  and splitting in real and imaginary parts,gives 

Thus the equation (3 .5)  is equivalent to the system of two equations (3.6). 
Let us represent (3.3)  in the form . 

where 
- d2F+2ap+a2 + p 2  -A2 
B ( p )  = --------- 

( p - t  a )2  + P 2  
In the half-plane Re p > 0 we have I B ( ~ ) ~  < 1, thus (3.7)  may be expanded 
into geometrical series 

T(') := Z ( p ) ( ~  + B + B2 t-...)9 (3.8)  

where 



The inverse transforins of A(p) is 
T - aTO A(t ) = e -* [To cos Pt +- -I- sin Pt] = Aoe-"' cos(pt - ly) . (3.9) 

P 
Using (3 -6) the function B(t)  ol~tained as 

B(t)  = g k ( t  + s)em sin Psds (3.10) 
P 0 

Rctttark. Ifwe /mow the original 

from (3.8) we find required solzttiolz ofthe problenz (3. I), (3.2) as 

0 

Accoj~~diizg to (3.7) equution (3.S) may be writtei? as 
P 2 + ~ - ~ ~ 2 ~ ( p ) = [ ( p + a ) 2 + ~ 2 ] [ 1 - ~ ( P ) ] = 0  (3.13) 

The equation 1 - B ( p )  = 0 has only real roots and may be solved easily by 
conlparisorz with (3.5). 

Consider the kernel 

when2 qk > 0, rk > 0 ( I c  = I,:! ,,.. , N) and r2, <: 17, <...< 7,. The equations 
(3.6) for obtaining the values a and ,!l gives us 



The i-terations 

define a and P 

Using (3.14) from (3.10) we :found 

where 

From the first of the Eq.(3.15) we get 

The row-sum norms of derivatives of iteration vector-function with 1; 
respect to a and p for (3.16) are estimated as below 

I 1: 

So the iteration process (3.16) is convergent to a unique limit if 3a/P < 1 . 



Eenznizn .Let the kernel of re1u;mtion be given as (3.14) arzd the inequaliQ 
(2.4) be valid. Then the equntion 

has N real negative roo/$ pk = -p, (p, > O,/c = 1,2 ,..., N),which may be 
calculated b-y the iteration procledz1re 

N tV 

px0 = -qk i- &ck, C' = C (k=1,2 ,... N). 
j=l j={ 

j i k  

Ip~oo$The function 1 -- B ( p )  is analytic in the entire p - plane,except at 
the slinple poles - 17, (/G = 1,2,. . . , N) on the negative part of the real axis. 

The hnc.tion 1 -- B(p)  tends to + cc, as p + qk - 0 and tends to - a 
for p + -- qk -I- 0 .In the origin we have 

Indeed, we have fiom (2.4) 

It is easy to see that B(m) =: 0. Thus ck = qk and from (3.210) 

follows.The zeros of the faxnetion 1 - B(P) are located between the 
poles,hence 

- 71/, < -Pk < -Vk-i ,k = 1,2, ... ,N; vo = 0. 
The equation (3.18) may be written as 



Here we define 

and we f o ~ m  the iteration process (3.19).From (3.22) we may write the 
equality 

Then the derivative of iteration function in (3.23) is estimated as below 

Thus the iteration process (3.19) is convergent .The proof of the lemina is 
now complete. 

Inverse transform of B(p)/(l - B(p)) is found by using the residues at 
poles - pk (lc = 1,2,. . ., N): 

N 

@(t)  = z Xke-pk' (3 -24) 
k=l  

where 

As we see xk =. 0 and from t11e condition 

pz 
Q(0) - lim ---= = B(0) = 2a 

p - + m l - B  
we have 



N 

@(O) = zxk = 2a .  (3.25) 
k=l 

The number - pk is the real root of equation (3.5) for the kernel (3.14),thus 

are identities.Moreover,frorn equality 
1 

the identity 

is 0btained.Usin.g (3.9) and (3.24) we find 

a 

P 
(pk - a ) )  e-"' sin pt + 1 

For the sake of the c;onciseness, let 

Then (3.28) may be written as 



TYzeurerrf .Let the conditiorzs of Lernma be valid.Then the function T(t) 
defi~led by the formula (3.29) is a solution of theproblern (3.1),(3.2). 

ProoJThe derivatives of (3.29) are 

k=l 

T" ( t )  = E,e-at ( a 2  cos/jt + 2upsinPt - p2 cospt) -t- E2e-" ( a 2  sin fit - 2a@cos,8l- 

Now we calculate 

/jE2 - (vk - ap"e-,lk/ . e-a' sin pt -I- --- p2 (3.32) 

Substituting (3.29),(3 -3 1) arid (3 32)  into equation (3.l)and using 
(3.15),(3.26) and (3.27) we see that the function (3.29) satisfies (3.1).From 
(3.28) it follows that T(0) = T, ,and from (3.30) we find T' (0) = 7; using 
(3.25). 

The first terns it1 (3.29) describes the damped vibrations process,and the 
last term shows the transient part of solution,As it follows from (3,29),the 
transient part of the solution is proportional to a (or to E ), 

Solution for the exponential kernel (which describes various tree- 
parametric moclels,( particularly in Maxwell and Voigt models) is obtained 
fkom (3.29) when N = 1 .This solutions is well-known in the literature [3,5- 
8].ln all of these studies a and /? were assumed to be detemzinable from 
(3.5).There exist no formulae obtained similar to (3.16). 

If in the formulas for a and p we neglect all terms begining from the 
second and third respectively,i.e. talce into account only the terms linear in 
E ,we will get the result [l],for the kernel (3,14), obtaine:d by Bogolyubov's 



averaging rnethod.The approach [3,p.61] leads to the same result,obtained 
by the method of complex modules,where the ratio of the imagina~y part of 
complex module to its real part is considered small enough and all of its 
powers over the first are negle:c.ted, 
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