A Study On The Parallel Normal Deformation In A Subspace \mathbf{W}_{n} Of A Weyl Space $\mathbf{W m}_{m}$

*Filiz Kanbay and **Leyla Zeren Akgün
*Department of Mathematics, Faculty of Arts and Science, Yuldzz Technical University, Turkey
**Department of Mathematics, Faculty of Science and Letters, İstanbul University, Turkey

(Accepted 20 November 2007)

Abstract

The parallel tangent and parallel Frenet deformation in Weyl space have already been investigated [7]. In this study some problems of deformations of subspace W_{n} of a Weyl space W_{m} were investigated. The necessary conditions that the normal $N_{v} \quad(\nu=n+1, \ldots, m)$ denoting the contravariant components of a system of unit normals to W_{n} be deformed parallelly and parallel tangent deformation for subspace W_{n} of W_{m} were obtained.

1. Introduction

An n- dimensional manifold W_{n} is said to be a Weyl space if it has a conformal metric tensor $g_{i j}$ and a symmetric connection ∇_{k} satisfying the compatibility condition given by the equation

$$
\begin{equation*}
\nabla_{k} g_{i j}-2 T_{k} g_{i j}=0 \tag{1.1}
\end{equation*}
$$

where T_{k} denotes a covariant vector field [1], [3],[4].
Under a renormalization of the fundamental tensor of the form
$\breve{g}_{i j}=\lambda^{2} g_{i j}$
the complementary vector field T_{k} is transformed by the law
$\breve{T}_{k}=T_{k}+\partial_{k} \ln \lambda$
where λ is a scalar function defined on W_{n}.
A quantity A is called a satellite of weight $\{p\}$ of the tensor $g_{i j}$, if it admits a transformation of the form

$$
\begin{equation*}
\bar{A}=\lambda^{p} A \tag{1.4}
\end{equation*}
$$

under the renormalization (1.2) of the metric tensor $g_{i j}[1],[3],[4]$.
The prolonged covariant derivative of a satellite A of the tensor $g_{i j}$ of weight $\{p\}$ is defined by [1], [2],[3]
$\dot{\nabla}_{k} A=\nabla_{k} A-p T_{k} A$.

The prolonged covariant derivative of a satellite A of the tensor $g_{i j}$ of weight $\{p\}$ is defined by [1], [2], [3]
$\dot{\nabla}_{k} A=\nabla_{k} A-p T_{k} A$.
We note that the prolonged covariant derivative preserves the weight.
The generalized derivative of a satellite A of the tensor $g_{i j}$ with weight $\{p\}$ is defined by [1], [3], [4]
$\partial_{k} A=\partial_{k} A-p T_{k} A$.
Let $W_{n}\left(g_{i j}, T_{k}\right)$ be a subspace which is immersed in a Weyl space $W_{m}\left(g_{a b}, T_{c}\right)$. We shall denote the coordinates in W_{n} and W_{m} by $u^{i}(i=1, \ldots, n)$ and $x^{a}(a=1, . ., m)$; the fundamental tensors by $g_{i j}$ and $g_{a b}$; the complementary vector T_{k} and T_{i}, respectively.
The coefficients of the metrics are connected by the relation
$g_{a b} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial x^{b}}{\partial u^{j}}=g_{i j}$.
On the other hand, the complementary vectors T_{k} and T_{k}, relative to W_{m} and W_{n} are connected by the relation
$T_{k}=x_{k}^{a} T_{a}$.
So, the prolonged covariant derivative of A, related to W_{n} and W_{m}, are defined by
$\dot{\nabla}_{k} A=x_{k}^{a} \dot{\nabla}_{a} A \quad(k=1,2, \ldots, n ; a=1,2, \ldots, m)$
where x_{i}^{a} denotes the covariant derivatives of x^{a} with respect to u^{i} (in the sequel, the indices $i, j, k \ldots$ will run from 1 to n, while the indices $a, b, c \ldots$ will run from 1 to m).
Let ${\underset{v}{\prime \prime}}^{\prime \prime}(v=n+1, \ldots, m)$ be the contravariant components in W_{m} of a system (m-n) normals to W_{n}.
It is obvious that they satisfy the relations

$$
\begin{equation*}
g_{a b} N_{\nu}^{a} N_{\mu}^{b}=\delta_{\mu}^{v} \tag{1.10}
\end{equation*}
$$

and
$g_{a b} N_{\mu}^{a} x_{i}^{b}=0$.
These ${ }_{v}{ }_{v}^{a}(\nu, \mu, \tau, \rho=n+1, \ldots, m)$ vectors as seen from (1.5) are normalized by the condition $g_{a b} N_{v} N_{v} N_{v}^{b}=1$.
It follows immediately from $g_{a b} N_{v}^{a} N_{v}^{b}=1$ that $\underset{v}{N^{a}}$ are satellites of $g_{a b}$ with weight $\{-1\}$, [4].
Since the functions x^{a} are invariants for transformations of u 's in W_{n}, their first prolonged covariant derivative with respect to u 's is the same as their covariant derivative or partial derivative, that is
$\nabla_{i} x=x_{, i}{ }_{i}=x_{i}^{\prime \prime}=\frac{\partial x^{a}}{\partial u^{i}}$.
On the other hand, the weight of x_{i}^{a} is $\{0\},[2],[3],[5]$. So
$\stackrel{U}{\nabla}_{j} x_{i}^{a}=\nabla_{j} x_{i}^{a}$.
According to (1.13) the covariant derivative of $x_{i}^{\prime \prime}$ with respect to u^{j} is

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\nabla}_{j} x_{i}^{a}=\sum_{v} w_{v i} N_{v}^{a} \tag{1.14}
\end{equation*}
$$

where the coefficients $w_{i j}$ are the components of a symmetric covariant tensor of the second order. Using (1.10) and (1.13), it is easily seen that the prolonged covariant derivatives of N^{a} with respect to u^{i} is [5]
$\nabla_{i} N_{\nu}^{a}=-w_{v} g_{i j}^{k j} x_{j}^{a}+\sum_{\mu \nu} \theta_{\mu} N_{\mu}^{a}$.

2. Paralel Normal Deformation

Let the point of $W_{n}\left(g_{i j}, T_{\kappa}\right)$ be infinitesimally displaced in $W_{m}\left(g_{a b}, T_{c}\right)$ such that the coordinates \bar{x}^{a} of the point \bar{P} (of the deformed subspace \bar{W}_{n}) corresponding to the point \mathbf{P} of the subspace W_{n} are given by

$$
\begin{equation*}
\bar{x}^{a}=x^{a}+\varepsilon \lambda^{a} \tag{2.1}
\end{equation*}
$$

where ε is an infinitesimal constant with weight $\{1\}$ and λ^{a} are components of the contravariant vector with weight $\{-1\}[6],[7],[10]$. On the other hand, let T be tensor field in W_{m} and let the points of the manifold undergo an infinitesimal transformation of the form (2.1). The value of the tensor field at the new points $\bar{x}^{\prime \prime}$ will be given by

$$
\begin{equation*}
T(\bar{x})=T(x)+\varepsilon \lambda^{b^{b}} \dot{\partial}_{b} T . \tag{2.2}
\end{equation*}
$$

In addition, it will be supposed that without loss of the generality that \bar{x}^{a} are also functions of u 's

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}\left(u^{1}, u^{2}, \ldots, u^{n}\right) . \tag{2.3}
\end{equation*}
$$

Let us give and prove the different statements of the two theorems for the parallel normal deformation.

Theorem 1: The condition that the normal $N_{v} N^{a}$ of the space $W_{n}\left(g_{i j}, T_{\kappa}\right)$ immersed in a Weyl space $W_{m}\left(g_{a b}, T_{c}\right)$ be deformed parallely during an infinitesimal deformation defined by (2.1) is $g_{a b} N_{\mu}^{a} \nabla_{i} \lambda^{b}=0$.

Proof: $N_{v}{ }^{a}(v=n+1, \ldots, m)$ at the point P of the subspace W_{n} denote the components of ($m-n$) mutually orthonormals with weight $\{-1\}$ normalized by the condition
$g_{a b} N_{v}^{a} N_{v}^{b}=1$.
The values of covariant components of the fundamental tensor of W_{m} at \bar{P} which is in the deformed subspace \bar{W}_{n} are given by
$\bar{g}_{a b}=g_{a b}+\varepsilon \lambda^{c}\left(g_{a d} W_{b c}^{d}+g_{b d} W_{a c}^{d}\right)$
[7],[9].
On the other hand let us use the symbol $\dot{\bar{\nabla}}$ for the prolonged covariant derivative in the deformed subspace \bar{W}_{n}.
$\bar{N}_{\mu}^{a}(\mu=n+1, . ., m)$ at the point \bar{P} of the deformed subspace \bar{W}_{n} denote the components of ($m-n$) mutually orthogonal normals with weight $\{-1\}$ normalized by the condition
$\bar{g}_{a b} \bar{N}_{\mu}^{a} \underset{\mu}{\bar{N}^{b}}=1$
and
$\bar{g}_{a b} \bar{N}_{\mu}^{a} \dot{\bar{\nabla}}_{i} \vec{x}^{b}=0$.
$\bar{N}_{v}^{a}(v=n+1, \ldots, m)$ at the point \bar{P} of the deformed subspace \bar{W}_{n} denote the components of ($m-n$) mutually orthonormals with weight $\{-1\}$ normalized by the condition $\bar{g}_{a b} N_{\mu}^{a} N_{\mu}^{b}=1$ and $\dot{\bar{N}}^{a}$ is a vector with weight $\{-1\}$ normalized by the condition $\bar{g}_{a b} \overline{\bar{N}}_{v}^{a} \overline{\bar{N}}_{v}^{b}=1$ and parallel to unit normal N_{μ}^{a} at P.
By using (1.5), (1.6)
$\dot{\bar{\nabla}}_{i} \bar{x}^{a}=\frac{\dot{\partial} \bar{x}}{\partial u^{i}}=\bar{\nabla}_{i} x^{a}=\frac{\partial \bar{x}}{\partial u^{i}}$
can be written.
By using [7],[8] and [10] we can define the vectors $\delta \underset{v}{N_{v}}$ and $\underset{v}{N_{v}^{a}}$, respectively as

$$
\begin{equation*}
\delta \underset{v}{N^{a}}=\bar{N}_{v}^{a}-\overline{\bar{N}}_{v}^{a} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta N_{v}^{a}=\lim _{\delta s \rightarrow 0} \frac{\delta N^{a}}{\delta s} \tag{2.10}
\end{equation*}
$$

where δs define as

$$
\begin{equation*}
\delta s=\sqrt{g_{a b} \delta x^{a} \delta x^{b}}=\varepsilon \lambda \tag{2.11}
\end{equation*}
$$

On the other hand, the condition that the unit normal $N_{v} N^{a}$ be deformed parallely is written by using [7] and [8] as

$$
\begin{equation*}
\Delta N_{v}^{a}=0 \tag{2.12}
\end{equation*}
$$

According to (2.10)

$$
\begin{equation*}
\delta \underset{v}{N_{v}^{u}}=0 \tag{2,13}
\end{equation*}
$$

and according to (2.9), it is seen that
$\bar{N}_{v}{ }^{\alpha}=\overline{\bar{N}}^{a}$.
Then, from [7],

$$
\begin{equation*}
\overline{\bar{N}}_{v}^{a}=N_{v}^{a}-W_{b c}^{a} N_{v}^{b} \cdot \varepsilon \lambda^{c} . \tag{2.15}
\end{equation*}
$$

By using (2.14) in (2.15) it follows that,

$$
\begin{equation*}
\bar{N}_{v}^{a}=N_{v}^{n}-\varepsilon W_{b c}^{u} N_{v}^{b} \lambda^{c} . \tag{2.16}
\end{equation*}
$$

From (2.1) and (2.8), it follows that

$$
\begin{equation*}
\frac{\dot{\partial} \bar{x}^{a}}{\partial u^{i}}=\frac{\dot{\partial} x^{a}}{\partial u^{i}}+\varepsilon \frac{\dot{\partial} \lambda^{a}}{\partial u^{i}} . \tag{2.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\bar{\nabla}}_{i} x^{a}=\dot{\nabla}_{i} x^{a}+\varepsilon \frac{\dot{\partial} \lambda^{a}}{\partial u^{i}} \tag{2.18}
\end{equation*}
$$

If we use (2.5), (2.16) and (2.18) in (2.7) and neglecting the terms of the second and higher order of ε, the following equations can be written;

$$
\begin{align*}
& {\left[g_{a b}+\varepsilon \lambda^{c}\left(g_{a d} W_{b c}^{d}+g_{b d} W_{a c}^{d}\right)\right]\left[N_{\mu}^{a}+\varepsilon \lambda^{f} W_{e f}^{a} N_{\mu}^{e}\right]\left[\begin{array}{l}
0 \\
\nabla \\
x^{b}
\end{array} x^{b}+\frac{\dot{\partial} \lambda^{b}}{\partial u^{i}}\right]=0} \\
& g_{a b} N_{\mu}^{a} \frac{\partial \lambda^{b}}{\partial u^{i}}+g_{a b} W_{d c}^{b} \lambda^{c} N_{\mu}^{a} x_{i}^{d}=0 \tag{2.20}\\
& N_{b}\left(\frac{\dot{\partial} \lambda^{b}}{\partial u^{i}}+W_{d c}^{b} \lambda^{c} x_{i}^{d}\right)=0 \tag{2.21}
\end{align*}
$$

and by using (1.6),

$$
\begin{equation*}
\underset{\mu}{N_{b}}\left(\frac{\partial \lambda^{b}}{\partial u^{i}}+T_{i} \lambda^{b}+W_{d c}^{b} \lambda^{c} x_{i}^{d}\right)=0 \tag{2.22}
\end{equation*}
$$

and by using [9],

$$
\begin{equation*}
N_{b}\left(\nabla_{i} \lambda^{b}+T_{i} \lambda^{b}\right)=0 \tag{2.23}
\end{equation*}
$$

and from (1.5)

$$
\begin{equation*}
\underset{\mu}{N_{b}} \dot{\nabla}_{i} \lambda^{b}=0 \tag{2.24}
\end{equation*}
$$

So, the teorem is proved.
Now, let us prove the following theorem which is the another form for the condition of parallel normal deformation.

Theorem 2: The condition of parallel deformation of the normal $N_{\mu} N^{a}$ of the subspace $W_{n}\left(g_{i j}, T_{k}\right)$ immersed in a Weyl space $W_{m}\left(g_{a b}, T_{\mathrm{r}}\right)$ is

Proof: λ^{a} defined in [10] as a vector in W_{m} being expressed linearly in terms of any m vectors not lying in the same geodesic surface can be expressed by tangential and normal component with respect to W_{n}.

$$
\begin{equation*}
\lambda^{a}=p^{i} x_{i}^{a}+\sum_{v} c N_{v}^{a} \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{v}{c}=g_{u b} \lambda^{\prime \prime}{\underset{v}{ } N_{v}=\lambda \cos \theta_{v} .}^{2} . \tag{2.27}
\end{equation*}
$$

Taking the prolonged covariant derivative of (2.26) with respect to u^{j} and using (1.14), (1.15), it follows that

$$
\begin{align*}
\dot{\nabla}_{j} \lambda^{b}=\left[\left(\nabla_{j}^{0} p^{k}\right)\right. & \left.-\sum_{\mu} c_{v} w_{v j} g^{k}\right] x_{k}^{a}+ \tag{2.28}\\
& +\sum_{v}\left(p^{k} w_{v k j}+\nabla_{j} c_{v}+\sum_{\mu} c_{\mu v \mu} \theta_{j}\right) N_{v}^{a}
\end{align*}
$$

by putting (2.28) in

$$
N_{b} \nabla_{i} \lambda^{b}=0
$$

and also using (1.10) and (1.11) we get

$$
\begin{equation*}
p^{k} w_{k j}+\nabla_{j} c_{\mu}+\sum_{\tau} c_{\tau} \theta_{j \tau}=0 \tag{2.29}
\end{equation*}
$$

So, the theorem is proved.
Parallel tangent deformation in Weyl space has been already studied [7]. By using these results as well let us prove the following theorem.

Theorem 3: If all the tangents x_{i}^{a} of a subspace W_{n} immersed in W_{m} are displaced parallelly during an infinitesimal deformation, then so are all the normal of W_{n} in W_{m}

Proof: Let x_{i}^{a} be components of a vector at P tangential to the curve of parameter u^{i} in W_{n}. The components \bar{x}_{i}^{a} of the corresponding tangential vector at \bar{P} in the deformed subspace \bar{W}_{n}.
Let \bar{x}_{i}^{a} be a vector at \bar{P} parallel to $x_{i}^{\prime \prime}$.

In tris case, by using [7], [8] and [10], $\frac{\dot{\partial} \dot{x}^{a}}{\partial u^{i}}=\frac{\dot{\partial} x^{a}}{\partial u^{i}}+\varepsilon \frac{\dot{\partial} \lambda^{a}}{\partial u^{i}}, \frac{\dot{\partial}=a}{\partial u^{i}}=\frac{\dot{\partial} x^{a}}{\partial u^{i}}-W_{b c}^{u} x_{i}^{b} \lambda^{c} \varepsilon$ and $\delta x_{i}^{a}=\varepsilon\left(\frac{\dot{\partial} \lambda^{a}}{\partial u^{i}}+W_{i c}^{a} x_{i}^{b} \lambda^{c}\right)$ are written.
Then, according to, (2.9), (2.10), (2.11) and (2.12) we write $\delta x_{i}^{a}=0$,
$\frac{\dot{\partial} \lambda^{a}}{\partial u^{i}}+W_{h c}^{a} x_{i}^{b} \lambda^{c}=0$
i.e.
$\dot{\nabla}_{i} \lambda^{n}=0$
This condition and (2.24) are combined and the theorem is proved

3. Special cases:

I. Let $W_{n}\left(g_{i j}, T_{k}\right)$ be a hypersurface which is immersed in a Weyl space $W_{n+1}\left(g_{d b}, T_{k}\right)$.

The following equations are given in [11]
$\lambda^{b}=p^{k} x_{k}^{b}+c N^{b}$
$\stackrel{\rightharpoonup}{n}_{k} x_{i}^{a}=w_{i k} N^{a}$
$\stackrel{\square}{\nabla}_{j} \lambda^{b}=\left(\nabla_{j} p^{m}-c g^{k m} w_{j k}\right) x_{m}^{b}+\left(w_{j m} p^{m}+\stackrel{\square}{\nabla}_{j} c\right) N^{b}$
By considering the above equations and the special case of (2.24), $N_{b} \nabla_{j} \lambda^{b}=0$ then (2.29) becomes
$\stackrel{\square}{\nabla}_{i} c+p^{j} w_{j i}=0$.
II. If the deformation is in W_{n}, that is the vector λ^{n} lies in W_{n}, λ^{n} is written as
$\lambda^{\prime \prime}=p^{i} x_{i}^{a}$
As can be seen from (2.26), all $\underset{\tau}{c}$ are zero. In this case, the condition (2.29) becomes $p^{k} w_{k j}=0$.
If W_{n} is also totally geodesic according to enveloping space $W_{m}, \underset{\substack{ \\\mu}}{w_{k j}}=0$.
In this case the condition (2.29) is identically satisfied.
III. $\quad \lambda^{a}=\sum_{v} c N_{v}{ }^{a}$, then the condition (2.27) becomes
$\nabla_{j}{ }_{\mu}+\sum_{\tau} c N_{\mu t} N^{a}=0$
If the deformation λ^{n} is only along N_{μ}^{a}, the λ^{a} becomes

$$
\begin{equation*}
\lambda^{\prime}=c_{\mu} N_{\mu}^{a} \tag{3.8}
\end{equation*}
$$

It is clear that $\underset{\mu}{c}=\lambda$ and $\underset{v}{c=0} \quad(\mu \neq \nu)$.
m this case, the condition (3.7) if $\underset{\mu}{c}=$ const., i.e. the deformation is of constant magnitude.

References

1. A. Norden, "Affinely Connected Spaces", GRFML, Moscow, 1976 (hn Russian)
2. V. Hlavaty, "Les Courbes de La Variete W_{h} ", Memor. Sci. Math., Paris, 1934
3. G. Zlatanov, "Nets in the Two Dimensional Space of Weyl", C. R. Acad. Bulgarie Sci.,(29) 5 (1976)
4. G. Zlatanov, "Special Networks in the n-Dimensional Space of Weyl", C. R. Acad. Bulgarie Sci., (41), (10), (1988)
5. Z. Senturk and L. Zeren, "On a Set of (m-n) Congruences of Curves in Subspace $W_{i n}$ ", Ganita, Vol. 49, No. 1, 1988,77-85
6. O.S. Germanov, "Motions in Weyl Spaces", Trudy Geometricheskogo Seminera,1976,9,2631
7. H. Demirbüker, L. Zeren Akgün, "Paralel Tangent and Paralel Frenet Deformation in Weyl Space", International Mathematical Journal V.5, N.5, 2004
8. Hayden H. A. "Deformations of a Cutve In Riemannian n- Space Which Displace Certain Vectors Parallely at Each Point" Proc. London Math. Soc. (2),32,1931
9. Weatherburn, C., E., "An Introduction to Riemannian Geometry and the Tensor Calculus", Cambridge University Pres, 1950
10. Kamala Devi Singh, "Infinitesimal Deformations in a Subspace $V_{i 1}$ of a Riemanian Space $W_{i n}$ " Acad. Roy. Belg. Bull. CI. Sci. V.5, 40, 1954
11. Z. Senturk and L. Zeren, "Prolonged and Generalized Coddazzi Functions Relative to the Congruence (λ) in a Hypersurface W_{n} of a Weyl Space W_{n+1} " Bull. Col. Math. Soc. 90, 5360 (1998)
