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The parallel tangent and parallel Frenet deformation in Weyl space have
already been investigated [7]. Tn this study some problems of deformations of
subspace ‘W, of a Weyl space W, were investigated. The necessary conditions

that the normial N° (v =n+1,...,m) denoting the contravariant components of a

system of unit normals to W be deformed parallelly and parallel tangent

deformation for subspace W, of W, were obtained.

1. Introduction

An n- dimensional manifold W, is said to be 2 Weyl space if it has a conformal metric tensor
g; and a symmetric connection V, satisfying the compatibility condition given by the
equation

V.g;~21,g,=0 (1.1

where T, denotes a covariant vector field [1], [3],[4].

Under a renormalization of the fundamental tensor of the form

i, =1g, (12)
the complementary vector field 7, is transformed by the law
T,=T,+3,In1 (1.3)

where 1 is a scalar function defined on ¥, .

A quantity 4 is called a satellite of weight {p} of the tensor g, if it admits a transformation
of the form

A=A74 (1.4)
under the renormalization (1.2) of the metric tensor g, [1}, [3L,[4]}.

The prolonged covariant derivative of a satellite 4 of the tensor g, of weight {p} is defined
by [1}, 2,13}
Vid=V,A-pT A. (1.5)
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The prolonged covariant derivative of a satellite 4 of the tensor g, of weight { p} is defined
by [1], [2L[3]

Vi A=V, A-pT, A. (1.5)

We note that the prolonged covariant derivative preserves the weight.

The generalized derivative of a satellite 4 of the tensor g, with weight { p} is defined by

(1L [3}[4]

n
O A=0,A-pT A. (1.6)
Let W,(g;,T,) be a subspace which is immersed in a Weyl space #,(g,,.7.). We shall

denote the coordinates in W, and W, by ui(i =1,...,n) and x" (a=l,..,}n); the fundamental

n

tensors by g, and g, ; the complementary vector 7, and T, , respectively.

wh

The coefficients of the metrics are connected by the relation

a b

R 1.7
B o ol S (1.7}
On the other hand, the complementary vectors 7, and 7,, relative to W,

m

and W are
connected by the relation

T, =x T, (1.8)

So, the prolonged covariant derivative of 4, related to W, and ¥, , are defined by

Vid=x; VoA (k=12,.,n;a=12,.,m) (1.9)
where x? denotes the covariant derivatives of x* with respect to »’ (in the sequel, the indices
i, jok.... will run from 1 to », while the indices «, b, c...will run from 1 to m ).

of a system (m-n) normals

m

Let N (v=n+],...,m) be the contravariant components in #¥,
14

o W,.

It is obvious that they satisfy the relations

gy N'N' =6 | (1.10)
voou

and

g, N xl=0. (1.11)
H

These N (v, i, 7, p=n+1,..,m) vectors as seen from (1.5) are normalized by the condition
v

g,N'N" =1,

v

It follows immediately from g, N* N* =1 that N are satellites of g, with weight {-1},
[4]. .
Since the functions x“ are invariants for transformations of #’s in W, , their first prolonged

covariant derivative with respect to u’s is the same as their covariant derivative or partial
derivative, that is
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axﬂ
Vix=x"=x'= ~.
’ Ju

On the other hand, the weight of x;" is {0}, [2], [3}, [5}. So

(1.12)

ik .
V,-xf:ijf . (113)

According to (1.13) the covariant derivative of x! with respect to u’ is
0
Vix! =Zw; N (1.14)

where the coefficients w; are the components of a symmetric covariant tensor of the second

order. Using (1.10) and (1.13), it is easily seen that the prolonged. covariant derivatives of
N¢ with respect to u' is [5]
d

V,N"=—w, g'x! +26, N°. (1.15)

v v ¥

2. Paralel Normal Deformation

Let the point of W, (g;,7,) be infinitesimally displaced in W, (g,.7.) such that the

!'I' 2
coordinates x” of the point P (of the deformed subspace #,) corresponding to the point P of
the subspace W, are given by

=x4ed® 2.1

where ¢ is an infinitesimal constant with weight {l}and A? are components of the

contravariant vector with weight {—1} [61.[71,[10]. On the other hand, let 7 be tensor field in
w, and let the points of the manifold undergo an infinitesimal transformation of the form
(2.1). The value of the tensor field at the new points z will be given by

TE)=T(x)+£A*6:T. (2.2)

In addition, it will be supposed that without loss of the generality that ¥* are also functions
of u’s

T =X (utut L u"). (2.3)

Let us give and prove the different statements of the two theorems for the parallel normal
deformation.

;»1,) immersed in a Weyl

Theorem 1: The condition that the normal ¥“ of the space W, (g

space W, {(g,.1.) be deformed parallely during an infinitesimal deformation defined by (2.1)

11
is g, Nﬂ V. A" =0.
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"Proof: N° (v=n+l,..,m) at the point P of the subspace W, denote the components of
{m - n) mutually orthonormais with weight {—1} normalized by the condition
g, N'N"=1. 24)

The values of covariant components of the fundamental tensor of W, at P which is in the
deformed subspace W, are given by

g{lb = g{:b +8‘2'C(gad%{: +gbdeu‘:) (25)
(71191

On the other hand et us use the symbol V for the prolonged covariant derivative in the
deformed subspace #,,.

N*(u=n+1,.,m) at the point P of the deformed subspace W, denote the components of
i

(m— ) mutually orthogonal normals with weight {—1} normalized by the condition

Zu NN =1 2.6)
and
2"V, x =0. @.7)

N'(=n+1,.,m) atthe point P of the deformed subspace #, denote the components of

(m—n) mutvally orthonormals with weight {ml} normalized by the condition Eab N“N' =1
VI

=a , . . . e — = =b
and N isa vector with weight {—1} normalized by the condition g , N N =1 and parallel
H 2

to unit normal ¥¢ at P.

"
By using (1.5), (1.6)

V,-x =— =6;x" _——_— {28)

can be written.
By using [7],{8] and [10] we can define the vectors § N* and AN, respectively as

SN =N"-N" 2.9)
and

SN°
AN® = lim — (2.10)

v a0 Ay
where &5 define as

85 =8, 5x°6x" =6A. (2.11)

On the other hand, the condition that the unit normal N be deformed parallely is written by
using [7] and [8] as
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AN" =0 (2.12)
Ac]cording to (2.10)

SN"=0 (2.13)
and according to (2.9), it is seen that

V' E" 2.14)
Then, from (71,

N =N-WaN" 4. (2.15)
B‘y usilvlg (2. 14)l in (2.15) it follows that,

N N"— W"N A°. (2.16)

From (2 1) and (2 8), it follows that
ax a x(! aﬂ({
+

— = - . 2.17

ou  ou' ou’ @17)

or

V.1 =V, 2" + 822 (2.18)
ou'

If we use (2.5), (2.16) and (2.18) in (2.7) and neglecting the terms ofi the second and higher
order of &, the following equations can be written;

n b
[gab+£)f(gm,%‘:+g,,de)]|:N +e AT Ne} VX' +e o =0
1
o aj‘b £
gﬁbN _i+gnpr(Ic/1 N (220)
# Ju
.A’b boae d '
N( +Wd,:/1 x)=0 (2.21)
3
and by using (1.6),
a/-{'b b b e d
N( —+ LA+ W A7) =0 (2.22)
and by using [9],
N,(VA +TA%) =0 (2.23)
H
and from (1.5)
N,ViA! =0 (2.24)

#H

So, the teorem is proved.

Now, let us prove the following theorem which is the another form for the condition of
parallel normal deformation.
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Theorem 2: The condition of parallel deformation of the normal N of the subspace
¥

W,(g;,1,) immersed in a Weyl space W, (g,,,7.) is
[
Prw,+(V,e)1Tch, =0, (2.25)
# rr

i HT

Proof: A° defined in [10] as a vector in W being expressed linearly in terms of any m

vectors not lying in the same geodesic surface can be expressed by tangential and normal
component with respect to W, .

A= p"x,fr +Ze N (2.26)
where
c=g A’ N'=Acos@. 2.27)

Taking the prolonged covariant derivative ofi (2.26) with respect to #’ and using (1.14),
(1.15), it follows that

. i3
VA =[(V,p")-Zew, g +

; (2.28)
R 2l
by putting (2.28) in
N, VE_,. M =0
arqd also using (1.10) and (1.11) we get
p* WH+V?1§+ETJ€HJ=O. (2.29)

H Hr

So, the theorem is proved.

Paralle]l tangent deformation in Weyl space has been already studied [7]. By using these
results as well let us prove the following theorem,

Theorem3: If all the tangents x of a subspace W, immersed in W, are displaced

parallelly during an infinitesimal deformation, then so are all the normal of W, in W,

Proof: Let x! be components of a vector at P tangential to the curve of parameter «' in W, .

The components ¥ of the corresponding tangential vector at P in the deformed subspace

W

ne
=i

Let x; beavectorat P parallel to x!'.
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) \ o N I . o a..="
In tins case, by using [7], [8] and [10], %A{ = 0 X e o4 ad 8 x ~W'x* A% and
i

— A
o' ou' o o <7
[

ox = 5(§i+W" x°A°) are written.
du

PF!

Then, according to, (2.9), (2.10), (2.11) and (2.12) we write dx;' =0,

a A +WIXA =0 (2.30)
OH

1.c.

Vi 2 =0 2.31)

This condition and (2.24) are combined and the theorem is proved

3. Special cases:

L Let W,(g;,T,) be a hypersurface which is immersed in a Weyl space W, ,,(£,,,7,) -

The following equations are given inn [11]

A’ =p*x) +e N (3.1
Vk x| =w, N (3.2)
a] ]

Vj /;Lb — (Vj_pm km k)xm +( mpm + Vj C)Nb (3.3)

f1
By considering the above equations and the special case of (2.24), N, V; A" =0 then (2.29)
becomes

D .
Viet plw, =0. ‘ (3.4)

II. If the deformation is in # , that is the vector A® liesin W , A" is written as

n?

At =p'x! : (3.5)
As can be seen from (2.26), all ¢ are zero. In this case, the condition (2.29) becomes
piw, =0. ' (3.6)
.M
If W, is also totally geodesic according to enveloping space W, w, =0.
7]

In this case the condition (2.29) is identically satisfied.

CIIL. A% =3¢ N, then the condition (2.27) becomes

vy v

V c+ZcN“—0 (3.7

roTopr

Ifthe deformation A" is only along N* , the A* becomes
H
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A(l _— CN” (3.8)
HOH
Itisclearthat e=A4 and ¢=0 (u=v).
o v

In this case, the condition (3.7) if ¢ = const., i.¢. the deformation is of constant magnitude.
I
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