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Abstract
In this paper a necessary conditions for optimality of the non smooth control
problem in discrete systems is obtained.
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Let the control process in “discrete interval” T =[t,,t,+1,..]be
described by the system ofinon-linear difference equations

x(t+1)= fl,x()ult)), 1eT\{t,}, xt,)=x,, (1)

where »-dimensional vector function f (t,x,u) is continuous together with
its the first order partial derivatives with respect to x, u(t) is » -dimensional
control function with values from a given bounded domain U,

u@®)eUcR",teT 2)
It needs to minimize the functional

So(u) = D, (x(t,)) -3
defined on the solition ofithe system (1) under the conditions

S;(W)=®,(x(t,)<0, i=12,.,p. (4)




Let the given scalar functions ®,(x),i=12,..,p. satisfy the
Lipshitz condition and have a derivatives on the arbitrary direction. The
problem of minimization of the functional (3) within the conditions
(1),(2),(4) problem is called the (1)-(4).

Let a matrix function F (t,r) is a solution of the difference equation.

F(t,r-1)=F(t,7)A(z), F(t,t-1)=E

E is unit matrix Suppose that (x(t),u(t)) is fixed prosses. Let us
denole the function

o) = fF‘(tl DL @ x(0),v) = £, x@E,u(@))],

=4,
Iw)={i:®,(x(¢) =0, i=12,..,p},
J ={0}UI.
Theorem 1. Suppose that the set of admisiable speeds of the system
(1), i.e, the set

F(t,x(t),U)= {y:y =f(t,x(t),v),veU}

is convex along the prosses. If the admissible control u(f) is optimal for
problem (1)-(4)  then the unequality hold  for the every
Wit)eU,teT

max 00,(x(1,)) _

ieJw) 0L ®)

holds for the every w(t)eU,teT.

Proof of an analoguns theorem is in [8]

Now suppose that in the problem (1)-(4) the the function [ is
linear with respect to x, i.e,

Flt, x,u)= A(t)x +b(t,u), 6)

where A(t) is given (nxn) matrix function, b(t,u) is a n-dimensionel
vector,

We suppose additionaly that @,(x), i=0,12,.,p have second
derivatives on the arbitrary direction. Set
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g(v) = S F(t, O[b(t v(1) — b(t, u ()],

t=ty
where F (z‘, 2') is a solution of the problem
F(t,r-1)=F(t,0)A(z), Flt,t-1)=E.
Theorem 2. Let the set
b(t,u)= {v:y=0b(t,v),veU}
be convex. If (x(z),u(t)) for the optimal solution of the problem (1)-(4), (6)
then the unequality

80, (x(4) 4

7
og(v) @)

hold for every v(z‘) eU,teT such that

max 0P (x(t,))
. —— <0,
iel(u) dg(v)
As we see in difference from Theorem 1 when we prove the Theorem
2 we need not that ®,(x),i=1,2,...,p satisbu the Lipshitz condition. It is
a result of the linearity of the righthand side of the system (1) with respect to
X,
Definition 1. We call the control u(z‘) special in the problem (1)-
@),(6) ifforall v(t)eU,teT
0Py (x(1)) _
og(v)
In this case next Theorem is true
Theorem 3. For the optimality of the special in the ginee of (8)

control u(z‘) in the problem (1)-(4),(6) it is necessary that

®)

azq)o(x(tx )

20 9
agZ(V) ( )

hold for all v(z‘) eU,teT such that
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_max oD, (x(t,)) <0
iel(u) og(v) '
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