Properties of Weakly Precontinuous Multifunctions

by Valeriu POPA and Takashi NOIRI

AMS Subject Classification: 54C08: 54C60.

Key words and phrases: preopen, precontinuous, weakly precontinuous, multifunction.

Abstract

In [15], the authors defined a multifunction $F: X \to Y$ to be weakly precontinuous if for each point $x \in X$ and any open sets G_1, G_2 of Y such that $F(x) \subset G_1$ and $F(x) \cap G_2 \neq \emptyset$, there exists a preopen set U of X containing x such that $F(U) \subset \operatorname{Cl}(G_1)$ and $F(u) \cap \operatorname{Cl}(G_2) \neq \emptyset$ for every $u \in U$. In this paper, we obtain further characterizations and several properties concerning weakly precontinuous multifunctions.

1 Introduction

In 1982, Mashhour et al. [10] introduced the notions of preopen sets and precontinuity in topological spaces. Przemski [26] and the present authors [14] have independently defined the notion of precontinuity in the setting of multifunctions. Quite recently, in [25], the authors have shown that these notions are equivalent of each other and obtained several characterizations of precontinuous multifunctions. On the other hand, in [15], the present authors have introduced the notion of weakly precontinuous multifunctions.

The purpose of this paper is to obtain several characterizations and some properties of weakly precontinuous multifunctions.

2 Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be semi-open [9] (resp. preopen [10], α -open [12], semi-preopen [1]) if $A \subset Cl(Int(A))$ (resp. $A \subset Int(Cl(A))$, $A \subset Int(Cl(Int(A)))$, $A \subset Cl(Int(Cl(A)))$). The family of all preopen sets of X containing a point $x \in X$ is denoted by PO(X, x). The family of all semi-open (resp. preopen, semi-preopen) sets in X is denoted by SO(X) (resp. PO(X), SPO(X)). The

complement of a semi-open (resp. preopen) set is said to be semi-closed (resp. preclosed). The intersection of all semi-closed (resp. preclosed) sets of X containing A is called the semi-closure [3] (resp. preclosure) [4] of A and is denoted by sCl(A) (resp. pCl(A)). The union of all preopen sets of X contained in A is called the preinterior of A and is denoted by pInt(A). The θ -closure [27] of A, denoted by $Cl_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $A \cap Cl(U) \neq \emptyset$ for every open neighborhood U of x. If $A = Cl_{\theta}(A)$ then A is said to be θ -closed. The complement of a θ -closed set is said to be θ -open. It is shown in [27] that $Cl_{\theta}(A)$ is closed in X for each subset A of X and that $Cl(U) = Cl_{\theta}(U)$ for each open set U of X. A subset A is said to be regular closed (resp. regular open) if Cl(Int(A)) = A (resp. Int(Cl(A)) = A).

Throughout the present paper, spaces X and Y always mean topological spaces and $F: X \to Y$ (resp. $f: X \to Y$) presents a multivalued (resp. single valued) function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of a space Y by $F^+(B)$ and $F^-(B)$, respectively, that is,

 $F^+(B) = \{x \in X : F(x) \subset B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. Let $\mathcal{P}(Y)$ be the collection of all nonempty subsets of Y. For an open V of Y, we

denote $V^{\perp} = \{A \in \mathcal{P}(Y) : A \subset V\}$ and $V^{\perp} = \{A \in \mathcal{P}(Y) : A \cap V \neq \emptyset\}$ [26].

Definition 1 A multifunction $F: X \to Y$ is said to be *precontinuous* [22] (resp. almost precontinuous continuous [15]) at a point $x \in X$ if for each open (resp. regular open) sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in PO(X, x)$ such that $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$. A multifunction $F: X \to Y$ is said to be precontinuous (almost precontinuous) if it has this property at each point of X.

Definition 2 A multifunction $F: X \to Y$ is said to be weakly precontinuous [15] at a point $x \in X$ if for each open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in PO(X, x)$ such that $F(U) \subset Cl(G_1)$ and $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. A multifunction $F: X \to Y$ is said to be weakly precontinuous if it has this property at each point of X.

Remark 1 For the properties of a multifunction, it is pointed out in [15] that the following implications hold: precontinuity \Rightarrow almost precontinuity \Rightarrow weak precontinuity.

3 Characterizations

Lemma 1 (Andrijević [1]) Let A be a subset of a topological space X. The following properties hold: (1) $pCl(A) = A \cup Cl(Int(A))$ and (2) $plnt(A) = A \cap Iut(Cl(A))$.

Theorem 1 The following properties are equivalent for a multifunction $F: X \to Y$:

- (1) F is weakly precontinuous at a point $x \in X$;
- (2) $x \in \operatorname{pInt}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2)))$ for every open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$;
- (3) $x \in \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))))$ for every open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$.

- Proof. (1) \Rightarrow (2): Let G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then there exists $U \in PO(X, x)$ such that $F(U) \subset Cl(G_1)$ and $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Thus we have $x \in U \subset F^+(Cl(G_1)) \cap F^-(Cl(G_2))$. Since $U \in PO(X)$, we have $x \in U = pInt(U) \subset pInt(F^+(Cl(G_1)) \cap F^-(Cl(G_2)))$.
- $(2) \Rightarrow (3)$: Let G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Now put $U = \operatorname{pInt}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2)))$. Then $U \in \operatorname{PO}(X)$ and $x \in U \subset F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))$. Thus $x \in U \subset \operatorname{Int}(\operatorname{Cl}(U)) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2)))$.
- $(3) \Rightarrow (1)$: For any open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$. We have $x \in F^+(G_1) \cap F^-(G_2) \subset F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))$. Put $U = \operatorname{pInt}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2)))$. Then by (3) and Lemma 1 $U \in \operatorname{PO}(X, x), F(U) \subset \operatorname{Cl}(G_1)$ and $F(u) \cap \operatorname{Cl}(G_2) \neq \emptyset$ for every $u \in U$. Therefore, F is weakly precontinuous at $x \in X$.

Theorem 2 The following properties are equivalent for a multifunction $F: X \to Y$:

- (I) F is weakly precontinuous;
- (2) $F^+(G_1) \cap F^-(G_2) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))))$ for every open sets G_1, G_2 of Y;
- (3) $\operatorname{Cl}(\operatorname{Int}(F^+(G_1) \cup F^-(G_2))) \subset F^+(\operatorname{Cl}(G_1)) \cup F^-(\operatorname{Cl}(G_2))$ for every open sets G_1, G_2 of Y;
- (4) $\operatorname{Cl}(\operatorname{Int}(F^{-}(\operatorname{Int}(K_1)) \cup F^{+}(\operatorname{Int}(K_2)))) \subset F^{-}(K_1) \cup F^{+}(K_2)$ for every closed sets K_1, K_2 of Y:
- (5) $\operatorname{pCl}(F^{-}(\operatorname{Int}(K_1)) \cup F^{+}(\operatorname{Int}(K_2)))) \subset F^{-}(K_1) \cup F^{+}(K_2)$ for every closed sets K_1, K_2 of Y;
- (6) $\operatorname{pCl}(F^{-}(\operatorname{Int}(\operatorname{Cl}(B_1))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}(B_2)))) \subset F^{-}(\operatorname{Cl}(B_1)) \cup F^{+}(\operatorname{Cl}(B_2))$ for every subsets B_1, B_2 of Y:
- (7) $F^+(\operatorname{Int}(B_1)) \cap F^-(\operatorname{Int}(B_2)) \subset \operatorname{pInt}(F^+(\operatorname{Cl}(\operatorname{Int}(B_1))) \cap F^-(\operatorname{Cl}(\operatorname{Int}(B_2))))$ for every subsets B_1, B_2 of Y;
- $(8) F^{+}(G_1) \cap F^{-}(G_2) \subset \operatorname{plnt}(F^{+}(\operatorname{Cl}(G_1)) \cap F^{-}(\operatorname{Cl}(G_2))) \text{ for every open sets } G_1, G_2 \text{ of } Y;$
- (9) $\operatorname{pCl}(F^-(G_1) \cup F^+(G_2)) \subset F^-(\operatorname{Cl}(G_1)) \cup F^+(\operatorname{Cl}(G_2))$ for every open sets G_1, G_2 of Y.
- Proof. (1) \Rightarrow (2): Let G_1, G_2 be any open sets in Y and $x \in F^+(G_1) \cap F^-(G_2)$. Then $F(x) \in G_1^+ \cap G_2^-$ and hence there exists $U \in \operatorname{PO}(X, x)$ such that $F(U) \subset \operatorname{Cl}(G_1)$ and $F(u) \cap \operatorname{Cl}(G_2) \neq \emptyset$ for every $u \in U$. Then $U \subset F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))$. Since $U \in \operatorname{PO}(X)$ we have $x \in U \subset \operatorname{Int}(\operatorname{Cl}(U)) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))))$. Therefore, we obtain $F^+(G_1) \cap F^-(G_2) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2))))$.
 - $(2) \Rightarrow (3)$: Let G_1, G_2 be any open sets in Y. Then, we have
- $X [F^{+}(Cl(G_{1})) \cup F^{-}(Cl(G_{2}))] = (X F^{+}(Cl(G_{1}))) \cap (X F^{-}(Cl(G_{2}))) =$ $F^{-}(Y Cl(G_{1})) \cap F^{+}(Y Cl(G_{2})) \subset Int(Cl(F^{-}(Cl(Y Cl(G_{1}))) \cap F^{+}(Cl(Y Cl(G_{2}))))$ $= Int(Cl(F^{-}(Y Int(Cl(G_{1}))) \cap F^{+}(Y Int(Cl(G_{2}))))) \subset$ $Int(Cl(F^{-}(Y G_{1}) \cap F^{+}(Y G_{2}))) = Iut(Cl(X (F^{+}(G_{1}) \cup F^{-}(G_{2})))) =$ $X Cl(Int(F^{+}(G_{1}) \cup F^{-}(G_{2}))).$

Therefore, we obtain $\operatorname{Cl}(\operatorname{Int}(F^+(G_1) \cup F^-(G_2))) \subset F^+(\operatorname{Cl}(G_1)) \cup F^-(\operatorname{Cl}(G_2))$.

(3) \Rightarrow (4): Let K_1, K_2 be any closed sets in Y, then $\operatorname{Int}(K_1)$, $\operatorname{Int}(K_2)$ are open sets of Y and thus $\operatorname{Cl}(\operatorname{Int}(F^+(\operatorname{Int}(K_1)) \cup F^-(\operatorname{Int}(K_2)))) \subset F^+(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Int}(K_2))) \subset F^+(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Int}(K_2))) \subset F^+(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Int}(K_2))) \subset F^+(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(K_1)) \cup F^-(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(\operatorname{Cl}(K_1))) \cup F^-(\operatorname{Cl}(K_1)) \cup F$

```
F^+(K_1) \cup F^-(K_2).
```

- $(4) \Rightarrow (5)$: Let K_1, K_2 be any closed sets in Y. Then we have $\operatorname{Cl}(\operatorname{Int}(F^-(\operatorname{Int}(K_1)) \cup F^+(\operatorname{Int}(K_2)))) \subset F^-(K_1) \cup F^+(K_2)$ and $F^-(\operatorname{Int}(K_1)) \cup F^+(\operatorname{Int}(K_2)) \subset F^-(K_1) \cup F^+(K_2)$. Therefore, by Lemma 1 we obtain $\operatorname{pCl}(F^-(\operatorname{Int}(K_1)) \cup F^+(\operatorname{Int}(K_2))) \subset F^-(K_1) \cup F^+(K_2)$.
- (5) \Rightarrow (6): Let B_1 , B_2 be any subsets of Y, then $Cl(B_1)$ and $Cl(B_2)$ are closed sets in Y. Thus, we obtain $pCl(F^-(Int(Cl(B_1))) \cup F^+(Int(Cl(B_2)))) \subset F^-(Cl(B_1)) \cup F^+(Cl(B_2))$.
- $(6) \Rightarrow (7)$: Let B_1, B_2 be any subsets of Y. We have $F^+(\text{Int}(B_1)) \cap F^-(\text{Int}(B_2)) = X [F^-(\text{Cl}(Y B_1)) \cup F^+(\text{Cl}(Y B_2))] \subset X \text{pCl}(F^-(\text{Int}(\text{Cl}(Y B_1))) \cup F^+(\text{Int}(\text{Cl}(Y B_2)))) = \text{pInt}(F^+(\text{Cl}(\text{Int}(B_1))) \cap F^-(\text{Cl}(\text{Int}(B_2)))).$
 - $(7) \Rightarrow (8)$: This is obvious.
- (8) \Rightarrow (1): Let G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then $x \in F^+(G_1) \cap F^-(G_2) \subset \text{plnt}(F^+(\text{Cl}(G_1)) \cap F^-(\text{Cl}(G_2)))$. Set $U = \text{plut}(F^+(\text{Cl}(G_1)) \cap F^-(\text{Cl}(G_2)))$. Then $U \in \text{PO}(X, x), F(U) \subset \text{Cl}(G_1)$ and $F(u) \cap \text{Cl}(G_2) \neq \emptyset$ for every $u \in U$. Therefore, F is weakly precontinuous.
- (6) \Rightarrow (9): Let G_1 , G_2 be any open sets of Y. Then we obtain $\operatorname{pCl}(F^+(G_1) \cup F^+(G_2)) \subset \operatorname{pCl}(F^-(\operatorname{Int}(\operatorname{Cl}(G_1))) \cup F^+(\operatorname{Int}(\operatorname{Cl}(G_2)))) \subset F^-(\operatorname{Cl}(G_1)) \cup F^+(\operatorname{Cl}(G_2))$.
- (9) ⇒ (8): Let G_1, G_2 be any open sets of Y. Then we have $F^+(G_1) \cap F^-(G_2) \subset F^1(\text{Int}(\text{Cl}(G_1))) \cap F^-(\text{Int}(\text{Cl}(G_2))) = X [F^-(\text{Cl}(Y \text{Cl}(G_1))) \cup F^+(\text{Cl}(Y \text{Cl}(G_2)))] \subset X \text{pCl}[F^-(Y \text{Cl}(G_1)) \cup F^+(Y \text{Cl}(G_2))] = \text{pInt}(F^+(\text{Cl}(G_1)) \cap F^-(\text{Cl}(G_2)))$. Therefore, we obtain $F^+(G_1) \cap F^-(G_2) \subset \text{pInt}(F^+(\text{Cl}(G_1)) \cap F^-(\text{Cl}(G_2)))$.

A function $f: X \to Y$ is said to be almost weakly continuous [6], weakly precontinuous, or quasi precontinuous [16] if for each point $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ such that $f(U) \subset Cl(V)$.

Corollary 1 (Noiri [13], Popa-Noiri [21], Paul-Bhattacharyya [17]) The following properties are equivalent for a function $f: X \to Y$:

- (1) f is almost weakly continuous;
- (2) $f^{-1}(V) \subset \operatorname{Int}(\operatorname{Cl}(f^{-1}(\operatorname{Cl}(V))))$ for every open set V of Y;
- (3) $\operatorname{Cl}(\operatorname{Iut}(f^{-1}(V))) \subset f^{-1}(\operatorname{Cl}(V))$ for every open set V of Y;
- (4) $\operatorname{Cl}(\operatorname{Int}(f^{-1}(\operatorname{Int}(K)))) \subset f^{-1}(K)$ for every closed set K of Y;
- (5) $\operatorname{pCl}(f^{-1}(\operatorname{Int}(K))) \subset f^{-1}(K)$ for every closed set K of Y;
- (6) $pCl(f^{-1}(Iut(Cl(B))) \subset f^{-1}(Cl(B))$ for every subset B of Y;
- (7) $f^{-1}(\operatorname{lut}(B)) \subset \operatorname{plnt}(f^{-1}(\operatorname{Cl}(\operatorname{Int}(B))))$ for every subset B of Y;
- (8) $f^{-1}(V) \subset \operatorname{plnt}(f^{-1}(\operatorname{Cl}(V)))$ for every open set V of Y;
- (9) $pCl(f^{-1}(V) \subset f^{-1}(Cl(V))$ for every open set V of Y.

Theorem 3 The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is weakly precontinuous;
- (2) $\operatorname{pCl}(F^-(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_1))) \cup F^+(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_2)))) \subset F^-(\operatorname{Cl}_{\theta}(B_1)) \cup F^+(\operatorname{Cl}_{\theta}(B_2))$ for every subsets B_1 , B_2 of Y;
- (3) $\operatorname{pCl}(F^{-}(\operatorname{Int}(\operatorname{Cl}(B_1))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}(B_2)))) \subset F^{-}(\operatorname{Cl}_{\theta}(B_1)) \cup F^{+}(\operatorname{Cl}_{\theta}(B_2))$ for every subsets B_1, B_2 of Y;
- (4) $\operatorname{pCl}(F^+(\operatorname{Int}(\operatorname{Cl}(G_1))) \cup F^+(\operatorname{Iut}(\operatorname{Cl}(G_2)))) \subset F^-(\operatorname{Cl}(G_1)) \cup F^+(\operatorname{Cl}(G_2))$ for every open

sets G_1 , G_2 of Y:

- (5) $\operatorname{pCl}(F^+(\operatorname{Int}(\operatorname{Cl}(V_1))) \cup F^+(\operatorname{Int}(\operatorname{Cl}(V_2)))) \subset F^-(\operatorname{Cl}(V_1)) \cup F^+(\operatorname{Cl}(V_2))$ for every preopen sets V_1, V_2 of Y_i :
- (6) $\operatorname{pCl}(F^+(\operatorname{Int}(K_1)) \cup F^+(\operatorname{Int}(K_2))) \subset F^+(K_1) \cup F^+(K_2)$ for every regular closed sets K_1, K_2 of Y.

Proof. (I) \Rightarrow (2): Let B_1, B_2 be any subsets of Y. Then $\operatorname{Cl}_{\theta}(B_1)$ and $\operatorname{Cl}_{\theta}(B_2)$ are closed in Y. Therefore, by Lemma 1 and Theorem 2 we obtain

$$\begin{aligned} & \operatorname{pCl}[F^{-}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{1}))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{2})))] \\ &= [F^{-}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{1}))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{2})))] \cup \operatorname{Cl}(\operatorname{Int}[F^{-}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{1}))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B_{2})))] \\ &\quad \subset F^{-}(\operatorname{Cl}_{\theta}(B_{1})) \cup F^{+}(\operatorname{Cl}_{\theta}(B_{2})). \end{aligned}$$

- $(2) \Rightarrow (3)$: This is obvious since $Cl(B) \subset Cl_{\theta}(B)$ for every subset B of Y.
- $(3) \Rightarrow (4)$: This is obvious since $CI(G) = CI_{\theta}(G)$ for every open set G of Y.
- $(4) \Rightarrow (5)$: Let V_1, V_2 be any preopen sets of Y. Then we have $V_i \subset \operatorname{Int}(\operatorname{Cl}(V_i))$ and $\operatorname{Cl}(V_i) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(V_i)))$ for i = 1, 2. Now, set $G_i = \operatorname{Int}(\operatorname{Cl}(V_i))$, then G_i is open in Y and $\operatorname{Cl}(G_i) = \operatorname{Cl}(V_i)$. Therefore, by (4) we obtain $\operatorname{pCl}(F^*(\operatorname{Int}(\operatorname{Cl}(V_1))) \cup F^+(\operatorname{Int}(\operatorname{Cl}(V_2)))) \subset F^-(\operatorname{Cl}(V_1)) \cup F^+(\operatorname{Cl}(V_2))$.
- (5) \Rightarrow (6): Let K_1, K_2 be any regular closed sets of Y. Then we have $\operatorname{Int}(K_1) \in \operatorname{PO}(Y)$ and $\operatorname{Int}(K_2) \in \operatorname{PO}(Y)$ and hence by (5) $\operatorname{pCl}(F^-(\operatorname{Int}(K_1)) \cup F^+(\operatorname{Int}(K_2))) = \operatorname{pCl}(F^-(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^+(\operatorname{Cl}(\operatorname{Int}(K_2)))) \subset F^-(\operatorname{Cl}(\operatorname{Int}(K_1))) \cup F^+(\operatorname{Cl}(\operatorname{Int}(K_2))) = F^-(K_1) \cup F^+(K_2).$
- $(6)\Rightarrow (1)$: Let G_1,G_2 be any open sets of Y. Then $\mathrm{Cl}(G_1)$ and $\mathrm{Cl}(G_2)$ are regular closed sets of Y. Therefore, we obtain $\mathrm{pCl}(F^-(G_1)\cup F^+(G_2))\subset \mathrm{pCl}[F^-(\mathrm{Int}(\mathrm{Cl}(G_1)))\cup F^+(\mathrm{Cl}(G_2))]$ of $F^-(\mathrm{Cl}(G_1))\cup F^+(\mathrm{Cl}(G_2))$. It follows from Theorem 2 that F is weakly precontinuous.

Corollary 2 The following are equivalent for a multifunction $f: X \to Y$:

- (1) f is weakly precontinuous;
- (2) $\operatorname{pCl}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B)))) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$ for every subsets B of Y;
- (3) $pCl(f^{-1}(Int(Cl(B)))) \subset f^{-1}(Cl_{\theta}(B))$ for every subsets B of Y;
- (4) $pCl(f^{-1}(Int(Cl(G)))) \subset f^{-1}(Cl(G))$ for every open set V of Y;
- (5) $pCl(f^{-1}(lnt(Cl(V)))) \subset f^{-1}(Cl(V))$ for every preopen set V of Y;
- (6) $pCl(f^{-1}(Int(K))) \subset f^{-1}(K)$ for every regular closed set K of Y.

Theorem 4 The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is weakly precontinuous;
- (2) $pCl(F^{-}(Int(Cl(G_1))) \cup F^{+}(Int(Cl(G_2)))) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for every $G_1, G_2 \in SPO(Y)$:
- (3) $\operatorname{pCl}(F^-(\operatorname{Int}(\operatorname{Cl}(G_1))) \cup F^+(\operatorname{Int}(\operatorname{Cl}(G_2)))) \subset F^-(\operatorname{Cl}(G_1)) \cup F^+(\operatorname{Cl}(G_2))$ for every $G_1, G_2 \in \operatorname{SO}(Y)$;
- (4) $pCl(F^{-}(Int(Cl(G_1))) \cup F^{+}(Int(Cl(G_2)))) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for every $G_1, G_2 \in PO(Y)$.

Proof. (1) ⇒ (2): Let $G_1, G_2 \in SPO(Y)$. Then $G_i \subset Cl(Int(Cl(G_i)))$ and $Cl(G_i) = Cl(Int(Cl(G_i)))$ for i = 1, 2. Since $Cl(G_1)$ and $Cl(G_2)$ are regular closed sets, by Theorem 3 we have $pCl(F^-(Int(Cl(G_1))) \cup F^+(Int(Cl(G_2)))) \subset F^-(Cl(G_1)) \cup F^+(Cl(G_2))$.

- $(2) \Rightarrow (3)$: This is obvious since $SO(Y) \subset SPO(Y)$.
- $(3) \Rightarrow (4)$: For any $G \in PO(Y)$, Cl(G) is regular closed and $Cl(G) \in SO(Y)$.
- (4) \Rightarrow (1): Let G_1, G_2 be any open sets of Y, then $G_1, G_2 \in PO(X)$ and we have $pCl(F^+(G_1) \cup F^+(G_2)) \subset pCl(F^-(Int(Cl(G_1))) \cup F^+(Int(Cl(G_2)))) \subset F^-(Cl(G_1)) \cup F^+(Cl(G_2)).$

It follows from Theorem 2 that F is weakly precontinuous.

Corollary 3 The following properties are equivalent for a function $f: X \to Y$:

- (1) f is weakly precontinuous;
- (2) $\operatorname{pCl}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(G)))) \subset f^{-1}(\operatorname{Cl}(G))$ for every $G \in \operatorname{SPO}(Y)$:
- (3) $\operatorname{pCl}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(G)))) \subset f^{-1}(\operatorname{Cl}(G))$ for every $G \in \operatorname{SO}(Y)$;
- (4) $\operatorname{pCl}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(G)))) \subset f^{-1}(\operatorname{Cl}(G))$ for every $G \in \operatorname{PO}(Y)$.

Theorem 5 The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is weakly precontinuous;
- (2) $Cl(Int(F^{-}(G_1) \cup F^{+}(G_2))) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for every $G_1, G_2 \in PO(Y)$:
- (3) $pCl(F^{-}(G_1) \cup F^{+}(G_2)) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for every $G_1, G_2 \in PO(Y)$:
- (4) $F^+(G_1) \cap F^-(G_2) \subset \text{pInt}(F^+(\text{Cl}(G_1)) \cap F^-(\text{Cl}(G_2)))$ for every $G_1, G_2 \in \text{PO}(Y)$.

Proof. (1) \Rightarrow (2): Let G_1, G_2 be any preopen sets of Y. Since F is weakly precontinuous, by Theorem 2 we obtain

$$\operatorname{Cl}(\operatorname{Iut}(F^{-}(G_1) \cup F^{+}(G_2))) \subset \operatorname{Cl}(\operatorname{Int}(F^{-}(\operatorname{Iut}(\operatorname{Cl}(G_1))) \cup F^{+}(\operatorname{Int}(\operatorname{Cl}(G_2)))))) \subset F^{-}(\operatorname{Cl}(G_1)) \cup F^{+}(\operatorname{Cl}(G_2)).$$

- (2) \Rightarrow (3): Let G_1, G_2 be any preopen sets of Y. By Lemma 1, we have $\operatorname{pCl}(F^-(G_1) \cup F^+(G_2)) = (F^-(G_1) \cup F^+(G_2)) \cup \operatorname{Cl}(\operatorname{Int}(F^-(G_1) \cup F^+(G_2))) \subset F^-(\operatorname{Cl}(G_1)) \cup F^+(\operatorname{Cl}(G_2)).$
- $(3) \Rightarrow (4)$: Let G_1, G_2 be any preopen sets of Y. Then we have

$$X - \operatorname{pInt}(F^{+}(\operatorname{Cl}(G_{1})) \cap F^{-}(\operatorname{Cl}(G_{2}))) = \operatorname{pCl}(X - (F^{+}(\operatorname{Cl}(G_{1})) \cap F^{-}(\operatorname{Cl}(G_{2})))) = \operatorname{pCl}((X - F^{+}(\operatorname{Cl}(G_{1}))) \cup (X - F^{-}(\operatorname{Cl}(G_{2})))) = \operatorname{pCl}(F^{-}(Y - \operatorname{Cl}(G_{1})) \cup F^{+}(Y - \operatorname{Cl}(G_{2}))) = CF^{-}(\operatorname{Cl}(Y - \operatorname{Cl}(G_{1}))) \cup (X - F^{-}(\operatorname{Int}(\operatorname{Cl}(G_{2})))) = CF^{+}(\operatorname{Int}(\operatorname{Cl}(G_{1}))) \cap F^{-}(\operatorname{Int}(\operatorname{Cl}(G_{2}))) = CF^{+}(\operatorname{Int}(\operatorname{Cl}(G_{1}))) \cap F^{-}(\operatorname{Int}(\operatorname{Cl}(G_{2}))) = CF^{+}(\operatorname{Int}(\operatorname{Cl}(G_{1}))) \cap F^{-}(\operatorname{Int}(\operatorname{Cl}(G_{2}))) = CF^{+}(G_{1}) \cap F^{-}(G_{2}).$$

This implies that $F^+(G_1) \cap F^-(G_2) \subset \operatorname{pInt}(F^+(\operatorname{Cl}(G_1)) \cap F^-(\operatorname{Cl}(G_2)))$.

 \cdot (4) \Rightarrow (1): Since every open set is preopen, this follows from Theorem 2.

Corollary 4 The following properties are equivalent for a function $f: X \to Y$:

- (1) f is weakly precontinuous;
- (2) $Cl(Int(f^{-1}(G))) \subset f^{-1}(Cl(G))$ for every $G \in PO(Y)$;
- (3) $\operatorname{pCl}(f^{-1}(G)) \subset f^{-1}(\operatorname{Cl}(G))$ for every $G \in \operatorname{PO}(Y)$;
- (4) $f^{-1}(G) \subset \operatorname{pInt}(f^{-1}(\operatorname{Cl}(G)))$ for every $G \in \operatorname{PO}(Y)$.

For a multifunction $F: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined by $G_F(x) = \{x\} \times F(x)$ for each $x \in X$.

Lemma 2 (Noiri and Popa [14]) The following hold for a multifunction $F: X \to Y$: (a) $G_F^+(A \times B) = A \cap F^+(B)$ and (b) $G_F^-(A \times B) = A \cap F^-(B)$ for every subsets $A \subset X$ and $B \subset Y$.

Theorem 6 Let $F: X \to Y$ be a multifunction such that F(x) is compact for each $x \in X$. Then F is weakly precontinuous if and only if $G_F: X \to X \times Y$ is weakly precontinuous.

Proof. Necessity. Suppose that $F: X \to Y$ is weakly precontinuous. Let $x \in X$ and W_1, W_2 be any open sets of $X \times Y$ such that $G_F(x) \in W_1^+ \cap W_2^-$. Then $G_F(x) \subset W_1$ and $G_F(x) \cap W_2 \neq \emptyset$. Since $G_F(x) \subset W_1$, for each $y \in F(x)$, there exist open sets $U(y) \subset X$ and $V(y) \subset Y$ such that $(x,y) \in U(y) \times V(y) \subset W_1$. The family $\{V(y): y \in F(x)\}$ is an open cover of F(x) and there exists a finite number of points, say, $y_1, y_2, ..., y_n$ in F(x) such that $F(x) \subset \bigcup_{i=1}^n V(y_i)$. Set $U_1 = \bigcap_{i=1}^n U(y_i)$ and $V_1 = \bigcup_{i=1}^n V(y_i)$. Then U_1 and V_1 are open in X and Y, respectively, and $G_F(x) = \{x\} \times F(x) \subset U_1 \times V_1 \subset W_1$. Since $G_F(x) \cap W_2 \neq \emptyset$, there exists $y \in F(x)$ such that $(x,y) \in W_2$ and hence $(x,y) \in U_2 \times V_2 \subset W_2$ for some open sets $U_2 \subset X$ and $V_2 \subset Y$. Put $U = U_1 \cap U_2$. Then U is an open set containing $x, F(x) \subset V_1$ and $F(x) \cap V_2 \neq \emptyset$. Since F is weakly precontinuous, there exists $U_0 \in PO(X, x)$ such that $U_0 \subset F^+(Cl(V_1))$ and $U_0 \subset F^-(Cl(V_2))$. It follows that $G = U \cap U_0 \in PO(X, x)$. By Lemma 2 we obtain $G = U \cap U_0 \subset Cl(U_1) \cap F^+(Cl(V_1)) = G_F^+(Cl(U_1) \times Cl(V_1)) = G_F^+(Cl(U_1 \times V_1)) \subset G_F^+(Cl(U_2 \times V_2)) \subset G_F^-(Cl(W_2))$. Therefore, $G_F(g) \cap Cl(W_2) \neq \emptyset$ for every $g \in G$. Then it follows that G_F is weakly precontinuous.

Sufficiency. Suppose that $G_F: X \to X \times Y$ is weakly precontinuous. Let $x \in X$ and G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then $F(x) \subset G_1$ and $F(x) \cap G_2 \neq \emptyset$. By $F(x) \subset G_1$, we have $G_F(x) \subset X \times G_1$ and $X \times G_1$ is open in $X \times Y$. Since $F(x) \cap G_2 \neq \emptyset$, we have $G_F(x) \cap (X \times G_2) = (\{x\} \times F(x)) \cap (X \times G_2) = \{x\} \times (F(x) \cap G_2)) \neq \emptyset$. Since $X \times G_2$ is open in $X \times Y$, there exists $U \in PO(X, x)$ such that $G_F(U) \subset Cl(X \times G_1) = X \times Cl(G_1)$ and $G_F(u) \cap Cl(X \times G_2) \neq \emptyset$ for every $u \in U$. By Lemma 2, we obtain $U \subset G_F^+(X \times Cl(G_1)) = F^+(Cl(G_1))$ and hence $F(U) \subset Cl(G_1)$. Moreover, by Lemma 2 we obtain $U \subset G_F^-(X \times Cl(G_2)) = F^-(Cl(G_2))$ and hence $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Therefore, it follows that F is weakly precontinuous.

Corollary 5 (Jafari-Noiri [5], Paul-Bhattacharyya [17]) A function $f: X \to Y$ is weakly precontinuous if and only if the graph function $g_f: X \to X \times Y$, defined by $g_f(x) = (x, f(x))$ for each $x \in X$, is weakly precontinuous.

Lemma 3 (Mashhour et at [11]) Let U and X_0 be subsets of a space X. The following hold:

- (1) If $U \in PO(X)$ and $X_0 \in SO(X)$, then $U \cap X_0 \in PO(X_0)$.
- (2) If $U \in PO(X_0)$ and $X_0 \in PO(X)$, then $U \cap X_0 \in PO(X_0)$.

Theorem 7 Let $\{U_{\alpha} : \alpha \in A\}$ be a cover of a space X by α -open sets of X. A multifunction $F: X \to Y$ is weakly precontinuous if and only if the restriction $F/U_{\alpha} : U_{\alpha} \to Y$ is weakly precontinuous for each $\alpha \in A$.

Proof. Necessity. Suppose that F is weakly precontinuous. Let $\alpha \in \mathcal{A}$ and x be any point in U_{α} . Let G_1, G_2 be any open sets of Y such that $(F/U_{\alpha})(x) \in G_1^+ \cap G_2^-$. Since F is weakly precontinuous and $(F/U_{\alpha})(x) = F(x)$, there exists $U_0 \in PO(X, x)$ such that $F(U_0) \subset Cl(G_1)$ and $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U_0$. Set $U = U_0 \cap U_{\alpha}$, then it follows from Lemma 3 that $U \in PO(U_{\alpha}, x)$. Then $(F/U_{\alpha})(U) = F(U) \subset Cl(G_1)$ and $(F/U_{\alpha})(u) \cap Cl(G_2) = F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Therefore, F/U_{α} is weakly precontinuous.

Sufficiency. Suppose that F/U_{α} is weakly precontinuous for each $\alpha \in \mathcal{A}$. Let $x \in X$ and G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. There exists $\alpha \in \mathcal{A}$ such that $x \in U_{\alpha}$. Then, we have $(F/U_{\alpha})(x) = F(x)$ and hence $(F/U_{\alpha})(x) \in G_1^+ \cap G_2^-$. Since F/U_{α} is weakly precontinuous, there exists $U \in PO(U_{\alpha}, x)$ such that $(F/U_{\alpha})(U) \subset Cl(G_1)$ and $(F/U_{\alpha})(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Since U_{α} is α -open in X, it follows from Lemma 3 that $U \in PO(X, x)$. Moreover, we have $F(U) \subset Cl(G_1)$ and $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Therefore, F is weakly precontinuous.

Corollary 6 (Popa and Noiri [21]) Let $\{U_{\alpha} : \alpha \in \mathcal{A}\}$ be a cover of a space X by α -open sets of X. A function $f_{\alpha} \colon X \to Y$ is weakly precontinuous if and only if the restriction $f_{\alpha} \colon U_{\alpha} \to Y$ is weakly precontinuous for each $\alpha \in \mathcal{A}$.

For a multifunction $F: X \to Y$, by $Cl(F): X \to Y$ [2] (resp. $pCl(F): X \to Y$ [19]) we denote a multifunction defined as follows: Cl(F)(x) = Cl(F(x)) (resp. pCl(F)(x) = pCl(F(x))) for each $x \in X$.

Definition 3 A subset A of a space X is said to be

- (1) α -regular [7] if for each $a \in A$ and any open set U containing a, there exists an open set G of X such that $a \in G \subset \operatorname{Cl}(G) \subset U$,
- (2) α -almost regular [8] if for each $a \in A$ and any regular open set U containing a, there exists an open set G of X such that $a \in G \subset Cl(G) \subset U$,
- (3) α -paracompact [28] if every X-open cover of A has an X-open refinement which covers A and is locally finite for each point of X.

Lemma 4 (Popa and Noiri [24]) If $F: X \to Y$ is a multifunction such that F(x) is α -regular and α -paracompact for each $x \in X$, then

- (1) $G^+(V) = F^+(V)$ for each open set V of Y,
- (2) $G^{-}(K) = F^{-}(K)$ for each closed set K of Y, where G denotes Cl(F) or pCl(F).

Lemma 5 (Popa and Noiri [24]) For a multifunction $F: X \to Y$, it follows that (1) $G^-(V) = F^+(V)$ for each open set V of Y, (2) $G^+(K) = F^+(K)$ for each closed set K of Y, where G denotes Cl(F) or pCl(F).

Theorem 8 Let $F: X \to Y$ be a multifunction such that F(x) is α -regular and α -paracompact for each $x \in X$. Then the following are equivalent:

- (1) F is weakly precontinuous;
- (2) CI(F) is weakly precontinuous;
- (3) pCl(F) is weakly precontinuous.

Proof We put G = pCl(F) or Ci(F) in the sequel.

Necessity. Suppose that F is weakly precontinuous. Then it follows from Theorem 2 and Lemmas 3 and 4 that for every open sets V_1 and V_2 of Y, $G^+(V_1) \cap G^-(V_2) = F^+(V_1) \cap F^-(V_2) \subset \operatorname{pInt}(F^+(\operatorname{Cl}(V_1)) \cap F^-(\operatorname{Cl}(V_2))) = \operatorname{pInt}(G^+(\operatorname{Cl}(V_1)) \cap G^-(\operatorname{Cl}(V_2)))$ and hence $G^+(V_1) \cap G^-(V_2) \subset \operatorname{pInt}(G^+(\operatorname{Cl}(V_1)) \cap G^-(\operatorname{Cl}(V_2)))$. By Theorem 2 G is weakly precontinuous.

Sufficiency. Suppose that G is weakly precontinuous. Then it follows from Theorem 2 and Lemmas 3 and 4 that for every open sets V_1 and V_2 of Y, $F^+(V_1) \cap F^-(V_2) = G^+(V_1) \cap G^-(V_2) \subset \operatorname{pInt}(G^+(\operatorname{Cl}(V_1)) \cap G^-(\operatorname{Cl}(V_2))) = \operatorname{pInt}(F^+(\operatorname{Cl}(V_1)) \cap F^-(\operatorname{Cl}(V_2)))$ and hence $F^+(V_1) \cap F^-(V_2) \subset \operatorname{pInt}(F^+(\operatorname{Cl}(V_1)) \cap F^-(\operatorname{Cl}(V_2)))$. It follows from Theorem 2 that F is weakly precontinuous.

4 Almost precontinuity and weak precontinuity

In this section, we obtain some sufficient conditions for a weakly precontinuous multifunction to be almost precontinuous.

Theorem 9 If $F: X \to Y$ is weakly precontinuous and F(x) is open in Y for each point $x \in X$, then F is almost precontinuous.

Proof. Let $x \in X$ and G_1, G_2 be open sets in Y such that $F(x) \in G_1^+ \cap G_2^-$. Since F is weakly precontinuous, there exists $U \in PO(X, x)$ such that $F(U) \subset Cl(G_1)$ and $F(u) \cap Cl(G_2) \neq \emptyset$ for every $u \in U$. Since F(x) is open for each $x \in X$, F(U) is open and $F(U) \subset Int(Cl(G_1)) = sCl(G_1)$. Moreover, $F(u) \cap Cl(G_2) \neq \emptyset$ and $F(u) \cap Int(Cl(G_2)) = F(u) \cap sCl(G_2) \neq \emptyset$. Therefore, F is almost precontinuous.

Lemma 6 (Popa and Noiri [23]) If A is an α -almost regular α -paracompact set of X and U is a regular open neighborhood of A, then there exists an open set G of X such that $A \subset G \subset \mathrm{Cl}(G) \subset U$.

Lemma 7 (Popa [20]) If A is an α -almost regular α -paracompact set of X and U is a regular open set such that $U \cap A \neq \emptyset$, then there exists an open set G of X such that $A \cap G \neq \emptyset$ and $Cl(G) \subset U$.

Theorem 10 If $F: X \to Y$ is weakly precontinuous and F(x) is an α -almost regular α -paracompact set of Y for each point $x \in X$, then F is almost precontinuous.

Proof. Let V_1, V_2 be regular open sets of Y and $x \in F^+(V_1) \cap F^-(V_2)$. Then $F(x) \subset V_1$ and $F(x) \cap V_2 \neq \emptyset$. Since F(x) is α -almost regular α -paracompact by Lemma 6 there exists an open set W_1 such that $F(x) \subset W_1 \subset \operatorname{Cl}(W_1) \subset V_1$. By Lemma 7, there exists an open set W_2 of Y such that $F(x) \cap W_2 \neq \emptyset$ and $\operatorname{Cl}(W_2) \subset V_2$. Since F is weakly precontinuous, there exists $U \in \operatorname{PO}(X,x)$ such that $F(U) \subset \operatorname{Cl}(W_1) \subset V_1$ and $F(u) \cap \operatorname{Cl}(W_2) \neq \emptyset$ for every $u \in U$. Therefore, we have $x \in U \subset F^+(V_1) \cap F^-(V_2)$. This shows that $F^+(V_1) \cap F^-(V_2) \in \operatorname{PO}(X)$. It follows from [15, Theroem 2] that F is almost precontinuous.

5 Sufficient conditions for weak precontinuity

Definition 4 A multifunction $F: X \to Y$ is said to be

- (1) upper almost weakly continuous [14] if for each $x \in X$ and each open set V containing F(x), $x \in \text{Int}(Cl(F^+(Cl(V))))$;
- (2) lower almost weakly continuous [14] if for each $x \in X$ and each open set V such that $F(x) \cap V \neq \emptyset$, $x \in \text{Int}(\text{Cl}(F^-(\text{Cl}(V))))$.

Definition 5 A multifunction $F: X \to Y$ is said to be

- (1) upper weakly continuous [18] if for each $x \in X$ and each open set V containing F(x), there exists an open neighborhood U of x such that $F(U) \subset Cl(V)$;
- (2) lower weakly continuous [18] if for each $x \in X$ and each open set V such that $F(x) \cap V \neq \emptyset$, there exists an open neighborhood U of x such that $F(u) \cap \operatorname{Cl}(V) \neq \emptyset$ for every $u \in U$.

Theorem 11 If a multifunction $F: X \to Y$ is upper almost weakly continuous and lower weakly continuous, then it is weakly precontinuous.

Proof. Let G_1, G_2 be any open set of Y. Then we have $F^+(G_1) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1))))$ [14, Theorem 3.1] and $F^-(G_2) \subset \operatorname{Int}(F^-(\operatorname{Cl}(G_2)))$ [18, Theorem 4]. Therefore, we have $F^+(G_1) \cap F^-(G_2) \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1))) \cap \operatorname{Int}(F^-(\operatorname{Cl}(G_2))) \subset \operatorname{Int}[\operatorname{Cl}(F^+(\operatorname{Cl}(G_1))) \cap \operatorname{Int}(F^-(\operatorname{Cl}(G_2)))] \subset \operatorname{Int}(\operatorname{Cl}(F^+(\operatorname{Cl}(G_1))) \cap F^-(\operatorname{Cl}(G_2)))]).$ It follows from Theorem 2 that F is weakly precontinuous.

Theorem 12 If a multifunction $F: X \to Y$ is lower almost weakly continuous and upper weakly continuous, then it is weakly precontinuous.

Proof. This is shown in the same way as in Theorem 11 by utilizing [14, Theorem 3.2] and [18, Theorem 6].

References

[1] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.

- [2] T. Bánzaru, Multifunctions and M-product spaces (Romanic), Bul. St. Tehn. Inst. Pohtehn, "Traian, Vuia", Timişoara, Ser. Mat. Fiz. Mec. Teor. Appl. 17(31) (1972), 17–23.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [4] N. El-Deep, I. A. Hasaneiu, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. R. S. Roumauie 27(75) (1983), 311–315.
- [5] S. Jafari and T. Noiri, Ou almost weakly continuous functions, Demonstratio Math. 31 (1998), 437–443.
- [6] D. S. Janković, θ-regular spaces, Internat. J. Math. Math. Sci. 8 (1985), 615–619.
- [7] I. Kovačević, Subsets and paracompactness, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Scr. Mat. 14 (1984), 137–141.
- [8] I. Kovačević, A note on subsets and almost closed mappings, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Ser. Mat. 17 (1987), 79–87.
- [9] N. Leviue, Scmi-open sets and scmi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [10] A. S. Mashhour, M. E. Abd El-Mousef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [11] A. S. Mashhour, I. A. Hasanein and S. N. El-Deep, A note on semi-continuity and precontinuity. Indian J. Pure Appl. Math. 13 (1982), 1119–1123.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [13] T. Noiri, Properties of some weak forms of continuity, Internat. J. Math. Math. Sci. 10 (1987), 97–111.
- [14] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (1993), 363–380.
- [15] T. Noiri and V. Popa, Almost precontinuous multifunctions, Res. Rep. Yatsushiro Nat. Coll. Tech. 20 (1998), 97–104.
- [16] R. Paul and P. Bhattacharyya, Quasi-precontinuous functions, J. Indian Acad. Math. 14 (1992), 115–126.
- [17] R. Paul and P. Bhattacharyya, Properties of quasi-precontinuous functions, Indian J. Pure Appl. Math. 27 (1996), 475–486.
- [18] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital. (5) 15-A (1978), 379–388.

- [19] V. Popa, Some properties of H-ulmost continuous multifunctions, Problemy Mat. 10 (1988), 9-26.
- [20] V. Popa, On almost quasicontinuous functions, I. P. G. Ploieşti, Lucr. St. Mat. Fiz. 1990, 64–70.
- [21] V. Popa and T. Noiri, Almost weakly continuous functions, Demonstratio Math. 25 (1992), 241–251.
- [22] V. Popa and T. Noiri, Characterizations of α-continuous multifunctions, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Ser. Mat. 23 (1993), 29–38.
- [23] V. Popa and T. Noiri, On upper and lower almost quasicontinuous multifunctions, Bull. Inst. Math. Acad. Sinica 21 (1993), 337–349.
- [24] V. Popa and T. Noiri, Some properties of β-continuous multifunctions, Anal. St. Univ. "Al. I. Cuza", Iași, 42, Supl. s. a. Mat. (1996), 207–215.
- [25] V. Popa and T. Noiri, A note on precontinuity and quasicontinuity for multifunctions. Demoustratio Math. 30 (1997), 271–278.
- [26] M. Przemski, Some generalizations of continuity and quasicontinuity of multivalued maps, Demonstratio Math. 26 (1993), 381–400.
- [27] N. V. Veličko, H-closed topological spaces. Amer. Math. Soc. Transl. (2) 78 (1968), 103–119.
- [28] J. D. Wine, Locally paracompuct spaces, Glasnik Mat. 10(30) (1975), 351–357.

Valeriu POPA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BACĂU
5500 BACĂU, ROMANIA
e-mail:vpopa@ub.ro

Takashi NOIRI DEPARTMENT OF MATHEMATICS YATSUSHIRO COLLEGE OF TECHNOLOGY YATSUSHIRO, KUMAMOTO, 866-8501 JAPAN e-mail:noiri@as.yatsushiro-nct.ac.jp