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Abstract

Iu [15]. the authors defined a multifiuetion £ X -+ ¥ to be weakly precoutin-
nous if for cach poiut .+ & X aud any open sets (L Gy of ¥Vosueh that £{e) < (7
aud () NGy # B there exists a preopen set U of X containing .+ such that
F) © CHG) and () 0 CLG) # @ for every v e 17 Tu this paper, we obtain
further characterizations and several propertics concerning weakly precoutinuous
multifuuctious.

1 Introduction

I 1982, Mashhour et al. [L0] introduced the notious of preopen sets and precontinnity in
topological spaces. Preemski [26] and the present authors [14] have independently defined
the notion of precontinuity in the setting of multifunctions. Quite recently, in [25], the
authors have shown that these notious are equivalent of cach other and obtained several
characterizations of precontinuous multifunctions. Oun the other hand, in [15], the present
authors have introduced the notion of weakly precontinuous multifunctions.

The purpose of this paper is to obtain several characterizations and sonie properties
of weakly precontinuons multifunctions.

2 Preliminaries

Let X be a topological space and A a subset of X The closure ofs A and the interior
of A are denoted by Cl(A) and Iut(A), respectively. A subset A is sald to be semi-
open. (9] (resp.  preopen [10], a-open [12], semi-preopen [L]} if A © Cl(Int(A)) (resp.
A CInt(ClAN. A C Int(Cl(Int(A))). A C Cl{Tut(CI1{A)))). The family of all preopen sets
of X containing a point » € X is denoted by P()-r(_\', ). The family of all senii-open {resp.
preopen, seni-preopen) sets in X is denoted by SO(X) (resp. PO(X), SPO(X)). The



complenent. of a semi-open (resp. preopen) set is said to be senvi-closed (resp. preclosed).
The intersection of all semi-closed {resp, preclosed) sets of X containing A is called the
semd-closure [3] (vesp. preclosure) ] of A and is denoted by sCl{A4) (vesp. pCl{A)). The
union of all preopen sets of X contained in 4 is called the preinferior of A and is denoted
by pint{a4). The A-closure [27] of A denoted by Cly{A), is defined to be the set of all
+ € X such that AN CHE) # @ for every open neighborhood U of v If A = Cly(4)
then A s said to be @-closed. The complenent of a 8-closed set s said to he B-open. Tt 1s
shown in [27] that Clp{A) is closed in X for each subset A of X and that CHU) = Cl()
for cach open set. U7 of X A subset A s said to be vegular closed (vesp. vegular open) if
ClInt (1)) = A (resp. Int(Cl(A)) = A).

Throughout the present paper. spaces N oand Yoalwavs mean topological spaces and
FoX — Y (resp. f N — Y) presents a nmultivalued (resp. single valued) function. For
a multifunction F 2 X — ¥, weshall denote the upper and lower inverse of a set. 3 of a
space Y by FYB) and F7(B), respectively, that is,

Ftigy={re X F)yCcBand F{B)={re XN :F(s)N B #p}.
Let P(Y) e the collection of all nonempty sul)a(‘ta of Y. 1"()1 an open Voof Yo we

denote Vi={A e POY) A CVviand Vo ={4d e PV} ANV £ B} |26].

Definition 1 A multifunction £ : X — Y is said to he precontinwons [22] (vesp. almaost
precontinwons continvons [15]) at a point. e € X if for eacl open (resp. regular open) sets
GGy of Yosueh that F(r) € GT NG5 there exists 7 € PO{X . r) such that F(U) C G
and F(u)NGy # B for every no e U0 A multifunction F : N — Y issaid to bhe precontinuoas
(almost precontinuons) if it has this property at cach point of X

Definition 2 A multifunction F : X — Y ix said to be weakly precontinuons [15] at a
point . € N if for cach open sets GGy of ¥ such that F(a) € G NG5, there exists
U/ € PO(N. ) such that F(U) ¢ CUG) and F{u) N CH{Gs) # B for everv v € U, A
nultifunction £ @ X — Y is said to be weakly precontinaous i it has this property at cach
point of X.

Remark 1 For the properties of a multifunction, it is pointed out in [15] that the fol-
lowing implications hold: precontinaity = almost precontinnity = weak precontinuity.

3 C(Characterizations

Lemma 1 {(Andrijevié [1]) Let A be a subset of a topological spuce X. The following
propevties hold: (1) pCHLA) = AU ClHInt{A)) and (2) pInt{A) = 4 N Tut(C1{A)).

Theorewr 1 The following propertics wre equavalent for o multifunction F @ XN — Y

(1) Fis weakly precontinuons af a point v € X ;

(2) . € pInt(FHCUG)) N F=(CUG))) for every open sets Gy, Ga of Y such that F(r) €

GinGy:

(3) v € Int(CHFHCUG ) N F(CUGY)))) for cvery open sets Gy Gy of Y sueh thal
F{r)e C naG.,.



Proof. (1) = (2): Let G1.Gy be any open sets of ¥ osuch that F{o) € GYn G5, Then
there exists U7 € PO(X, o) such that F(U) € CHG) and Flu)n ClGy) # B for every
n e U, Thus we have v € U C FH{CUG ) N F(CUEL)). Since U € PO(X ). we have
r €U =plut() C pInt(FHCHG )y N F(CHGL))). '

(2) = (3): Lot G .Gy be any open sets of ¥ osuch that F{e) € GT NG5, Now put
U = pInt{(FT{CUG)) N F7(CUGL))). Then U € PO(,\') and + € U C FHCHG))) N
FTCHGY))). Thus @ € U C Int(CHT)) € Int{CHFT{CHG ) N F7{CHGL)))).

(3) = (1): For any open sets G, Gy of ¥ osuch that F{r) € GT NGy, We have o« €
FHGONF(GY) € FHCUG)INF(CHGY)). Put U = pIut{(FH{CUG BN F{CHG2))).
Then by (3) and Lemma 1 U € PO{X, ). F(I7) € CHG,) and F{u) NCHG,) #£ B for

overy u € 7. Therefore, F is wealdy precoutinuous at v € X

Theorem 2 The following propevtics arve cquivalent for a multsfunction F @ X — Y.

(1) F s weakly precontiuous:

(2) FYGONF(Gy) Clut(CHFT(CUG )Y N E{CUGL)))) for cvery open sels Gy, Gy of
Y,
(3) CH{I{ FH{G ) U F{GY))) € FHCUG)Y U F{CUGL)) for every open sels Gy Gy of
Y,

(4) Clint{ F~ (Int{ A" N U FHInt(K))) © F (K ) UFT(I) for evevy closed sets Ky, K
of ¥;

(5) pCUF (It (A ) U FH{Int{)))) © FT(RA) U FT{IK) for cvery closed sels Ky Ky
of ¥; .

(6) pCUF~(Int(CU B ) HUFH (Int(CL(13,)))) € F(CUB))UFT(CUBy)) for coery subscts
B], B'_g ()f ¥

(7) FH(Int(By)) N F-(Iut{B3y)) < pInt{F{Cl(1ut{B;))} N F{Cl{Int{By)))) for ceery
subscts By, By (Jf Y,

(8) FYIG )N F(Gy) C plut(FH(CUG)) N F{CUGL))) for every open sets G Gy of Y,
(9) pCHUFH{GHUFHGY)) € FT(CKG ) U EFHCUG)) for coery open sets G Gy of Y.

Proof. (1) = (2): Let ¢, Gy be any open sets in Y and € FHG )N F{G3). Then
F(r) € T NGy and hence there exists U € POLY . @) such that F{U} C CHG,) and
Flu)yn CUG,) # B for every w € U, Then U C FHCHG,)) 0 FT(CHGL)). Since U €
PO(X) we have » € 7 € Int(Cl{/)) € Int(CUFH(CUG ) N F{CL{G)))). Therefore,
we obtain FH{G ) N F{Gy) C Int(CHFT(CUG )y N F{CHG2)))).

(2) = {3): Let G’[,G’g he any open sets in Y. Then, we have

[ [FHCHG ) U F(CHG))] = (X — FHCRG)) N(X - F Ga))) =
FY -CUG )N FTHY — CHGY)) € Int{CH{F(CI{Y — Cl{G, )))OF+(€1( ~ CUGNY)
= Int(CHF (Y — Int(CHE ) N FHY — Int{CHGL))))) C
Int(CHF (Y —~G)NFHY —Gy))) = Int{CHX — (FHGH)UF(GL)) =
X — ClInt{ FH{G 1)U F(Ga)).

Therefore, we obtain Cl(Int{F¥ (G U F(GL)) € FHCUG)) U F(CUGL)).

(3) = {4): Let Ky, Ky be any closed sets in Y, then Int(A)), Int(Ky) are open sets of
Y and thus CH{Int{ FH(Int(K ) U F (Int(K2)))) € FHCYInt(A,) ) U F~(Cl{Iut{K))) C



FHEN VU F(N).

(4) = (5): Let K, Ky he any closed sets in V. Then we have C'I(Iu‘r(F*(Iu‘r‘(I\'l)) u
FrInt(Ku))) € FT(N)VUFY(KNy) aud FT(Int (KU EFET(Iut(Ky)) C F (N JUFYR,).
Therefore, by Lemma 1 we obtain pCHE (Int{ A ) UEF (I (K0))) C F (KU FY ().

(D} = (6): Let 3. By be any subsets of Y7, then CH{ By ) rlll(l CH B3y) are closed setsin Y,
Thus, we obtain pCLHE~(Tut (CH{ B, })) U F+(Im(( 1(B2)))) C F(CUB )) U FH(CBy)).

{(G) = (7)' Let By, By he auy subsets of Y. We have FH(Iut(B)NF (Int(By)) = X —
[F (CHY — B)UFHCUY - Bo))] € X —pClHE  (Tut(CHY = B)YUFH(Int(CUY — Ba))))
= plut(FT(CHIn () N F(CHIut(B2))).

{7) = (8): This is obvious.

(8) = (L): Let G, Gy be auy open sets of ¥osuch that F(a) € Gf NG5, Then
€ FYGH N F(Gy) C plat(FHCHG )Y N F(CUGL)Y). Set U = plut(FT(CUG ) N
FTCUGR))). - Then U7 € PO(N ), F(U) ¢ CHGy) and F(u) N CHG ) # O for every
u e UV, Therefore, Fis weakly precoutinuous.

(6) = (9): Let G 1. Gy be any open sets of Y, Then we obtain pCHE{(GHUEY (L)) ©
pCUFE Iut((l(Gl)))UF+(111L{C'1(G2)))) C FT(CHG ) U FYCUG ). :

(9) = (8): Let GGy be any open sets of Yo Then we have FYGY) N F(Gy) C
Fl(Inl(CE(Gl)))ﬂF'”(Iut(('l(Gg)}) = N = [F(CY = CUGONUFHCUY —CUG)Y C
XN—pClF (Y =CUG ) UFHY = CUGY)] = plut{ FH{CUG NN F(CUGL)Y). Therefore,
we obtain FHG) N F(Gy) € plut(FHCHG )Y N F{(CLHGH))).

A function f 0N — Y 1w said to be almaost weakly continuous [6], weakly precontinuous.
or yuasi precoptinuons [16] 1f for each point v € X and cach open set Voof Yo containing
Fr), there exists U € PO(N . ¢ such that f(I7) ¢ CHVY).

Corollary 1 (Noiri [13]. Popa-Noiri [21]. Paul-Bhattacharvya [17]) The following prop-
crtics arve equivalent for a function f . N — Y

(1) fis abmost weekly continwous;

(2) F7HV) C It (CULTHCUVIN) for coery open set Voof Y

(1) CUTut (=1 V) € f- l(C'l( VY for cvery open set Voof Y

(4) C'l(Iut(f YIut{A))) C fFUR) for every elosed set K oof Y

(5) pClf Y{Int(W) C f~ l [\) for every closed set K oof Y

(6) pCL HIut (CUBYY) € fHUCUBY) for cvery subsef B of Y
(7) f Y Int(BY)) C plu‘r( 7'(('1(Int(B)))) Jor cvevy subset B of Y
(8) f~1v ) C plut{f~ ( N for every open set Voof Y

(9) pCl VY fT VYY) for every open set Voof Y.

Theovem 3 The following arve equivalent for a multifunction F @ X — Y

(1) Fis weakly precontinuons;

(2) pCHE~(Iut(Cly(81))) U FT(lut(CLy(B2)))) € F7(Clp(B1)) U FH(Clp(By)) for coery
subsets By By of Y;

(2) pCUF ~(Tut(CLB, YU FHIut{Cl(B2)))) © F(Cla(B1))UEFEH{Cly(By)) for cvery sulb-
sets By By of Y

(4) pCHE ™ (Int(CHG)N U FHIu{CHGL)Y)) € F(CHG ) U FHCUG)) for coory open



sels G Gy of Y

(3) pCUF (It (CIU)NU FHIn (CULLD)) € F(CU1 U FH(CYVL)) for every preopen
sets Vot of Y5

(6) pCHE~(Int (K ) U FHInt(Ke))) © Fo(A YU FY(R) for every reqular closed scts
I Ky af Y :

Proof. (1) = (2): Let By, By be any subsets of Y. Then Clg(B,) and Clg{32) arce
closed in Y. Therefore, by Lemma 1 and Theorein 2 we nhtain
pCUF  (Int{Cl,(B)))) U FH{(Int(Cly(By)))]
= [F(Int(Cl,(B )N U F'*(Int((‘l”(BA_;)})] U Cl{Iwt (£~ (Int(C 1{,{ DN U FHIut{CL,(Ba))))
' C F (Clg(B31)) U F T (Cly(B2)).

(2) = (3): This is obvious since CHBY C Clp(B) for every subset 3 of Y.

(3) = (4): This is obvious sinee CI{(7) = Clg{G'} for every open set G of Y.

(4) = (5): Let VLTS be any preopen sets of Y. Then we have V; C Int(CH{(V,)) and
CHVY) = CYInt{C1(V)))) for i = 1.2, Now, set G = Int{C'1{};)), then ¢, is open in ¥V and
CHG,) = CLHV). Therefore, by (4) we obtain pCHE ™ (Int(CHV)N U FH(Int(CHVL)))) C
F(CIT1) U FHCI(V)).

(b) = (6); Let I K0 be any regular closed sets of Y. Then we have Int (A7)
e POY) and Int(Ay) € PO(Y) and hence by (5) pCHF ~(Int{(A 1)) U Fi(Int(Ay)) =
pCHE (T (ClIut (K DNDUF (Lot (CHIn{ K y))))) € F(CHLint (K )))YUFHCHTut (K,)) =

Frolhyyu FHR ).
{6) = (1): Let .Gy be any open sets of ¥V, Then CHG, ) and CH{G,) are regular
(lua((l sets of Y. Therefore, we obtain pCHF ~(Gh) U FHGL)) < pCUE ™ (Int (CHGH ) U
FH{Int(CUG)))]) € FCUG ) U FHCUGY)). Tt follows from Theorem 2 that F is

weakly precoutinnous.

Corollary 2 The following ave equivalent for a multifunction [ X — ¥
(1) fisw fr:Mq precoitinuous;

(2) pClf (Tt (10(]3’)))) HCl(B)) for every subsets B of Y;

(1) pClHf "(In (CUBY))Y) © I LS ( V) for ewery subsets B of Y

(4) pClUf- (Int((l ({GN) C FHUCUG)) for enery open set Voof Y

(5) pCl [~ '(lut(Cl V)Y < fHCHVY) for cvery preopen st Voof Y

(6) pClf~ Y Int(A)) < f ([ ) for every veqular closed set Woof Y.

Theorem 4 The following arc cquivalent for a m,?r,lt-.r;fu.w.r'?‘i.m.t F:X Y

(1) F s weakly precontinuons;

(2) pCUF {Int (CUG)NHUFHInt(CUGL)))) € FT{CHG))VFT(CUGY)) for every G Gy €
SPO(Y):

() pCHF (Int(CHG)NHUFH(Int(CUGL)))) € FICHG))UEFETHCHGY)) for every G Gy €
SO(Y); : o

(4) pCUF {Int(CUGONUET (Int(CUC L)) € F (CHUG))IUF T (CUG L)) for every Gh, Gy €
PO(Y).



Proof. (1) = (2): Let G.Gy € SPO(Y). ‘Then &; ¢ Cl{Int(CLG))) aud CHG,) =
Cl{Int(CHG;))) for + = 1.2, Since CYG ) and CHGy) are regular closed sets, by Theorem
3 we have pCHF ~(Int(CH(G 1)) U FHInt(CHG ) )) € F(CHG )Y U FH{CHGL)).

(2) = (3): This is obvious since SO(Y) < SPO(Y). '

(3) = (4): For any & € PO(Y"), CHG) is regular closed and CH{G) € SO(Y).

(4) = (1): Let G, Gy be any open sets of Y, then G Gy € PO(Y) and we have

PCHF~(G) U FTH(GL)) < pCHE~(Tnt(CUG DN U FHInt{CHGY)))) C
F(CUG ) U FHCUG)).

It follows from Theorem 2 that F is weakly precontinuons,

Corollary 3 The following properties are equrvalent for a function f . X — Y
(1) fis weakly precontinuous;

(2) pClf HInt(CUG)))) C FHCHG)) for every G € SPO(Y
(3) pCLf (It (CUG)))) € fTHCUG)) for every G € SO(Y);
(4) pCIf (Tut{CUE)))) € fFHCHE)) for every G € PO(Y).

):

Theorem 5 The following ave equivalent for a multifunction F . X — Y

(1) F is weakly precontinuous;

(2) Cl{Iut(F~(G1) U FH(GL)) € FT(CUG L)) U FHCUGY)) for cvery Gy, Gy € PO(Y):
(3) pCUF~(G1)U FY(Gy)) C F(CUH{G)) U F+(C' (G)) for every Gy .Gy € PO(Y):
(4) FHG) N F{Gy) C pInt(FHCHG)) N E7(CUG))) for ceery Gp, Gy € PO(Y).

Proof. (1) = (2): Let Gy, Gy be any preopen scts of Y. Since F is weakly precontin-
uous, by Theorcm 2 we obtain
Cl{Tut(F~({G ) U FY (G, ))) C Cl{Int(F~(Int (CH{G M) U FH{Int (CH{G)))) C
F(CHG ) U FHCHG)).
(2) = (3): Let (1, Gz be any preopen sets of Y. By Lennna 1, we have
pCLF~(G1) U FH(G2)) = (F(G1) U FH(G)) U CHInt (P (G U F*(G)) ©
F(CUG)) U FH(CUGY)).
(3) = (4): Let &y, Gy be any preopen sets of ¥ Then we have
X — plut(FHCUG)) N F7(CHG))) = pCUX — (FF(CUG )N F(CUG)))) =
pCH(X — F+(CI(G1))) U(X — F(CHG)))) = pClUE (Y ~ C{G ) UFH{Y - CHG)))
F=(CHY = QUG ) U FHCWY — CHGY))) =
\ FH(Tut(Cl (Gl))) (X — F(Int(CI{G)))) =
— (FHIH(CUG D)) N F-(It(CUG))) € X — (FHGH) N E=(G)).
This impies that FHG )N F(Gy) C plut(FH{CHG )N F{CHGY))).

. (4) = (1): Since every open sct is preopen, this follows from Theorem 2.

Cordllary 4 The following properties are equinalent for a function [ X — Y :
(1) f is weakly precontinuous; _

(2) Cl(Int(f 1)) ¢ fYHCHG)) for every G € PO(Y);

{(8) p(‘l(f HGY) € fF7HCHG)) for every G € PO(Y);

(4) f~ G C plut(f~ HCUGY)) for every G € PO(Y),



For a nlulliﬁuuiion F o X — Y, the graph multifunction Ge: XV — Y x ¥V is defined
by Gpe(r) = {a} ) for cach » € X.

Lemuma 2 (Notri and Popa [14]) The following hold for a multifunction F @ X — Y
(a) GHAx B)=ANFT(B) and (b) G1:(A x B)= AN F~(B)
for cocry subsils A C XN and B C Y.

Theoremn 6 Lot F o X = Y be amadisfunction suel that F (&) is compact for each v € X.
Then £ s weakly precontinvouns of and only if G X — X x Y is weakly precontinuous,

Proof. Necessity. Suppose that F @ X — Y is weakly precontinnons. Let @ e X and
1V 0% De any open sets of X x Y such that Ge(e) € WENW, . Then Gp{r) C Wy and
Gpr(e) iy # 0. Since Gp(r) € W, for cach y € F(r), there exist open sets U(y) < X
amd U{y) C Y sueh that (r.g) € Uy) x Vi{y) C Wy The family {V(y):y € F()} is an
open cover of F(. ') and there exists a finite mumber of points, say, 41, ¥2, ..., yn ill F(. ) such
that F(r) C U Vi), Set Uy =N Uly:) and V) = UL, V(y). Then Uy aud Vi are open
in X and Y. (spo(ll\(l\,(m(l(“; )= {ryx F(r CU;XV]CHl Since G g(r)NIVy # B,
there exists y € F(a) such that (. y) € ¥y and h(!n((‘. (r.y) € UyxVy C 1V, for some open
sots Uy < XN and Vo C YL Put U = Uynly. Then U7 is an open set containing o, F(a) C V)
and Fr)n 1y # 0. Since F'is weakly precontinnous, there exists Ug € PO(X, ») such
that Uy < FHCUVY)) and Uy € F(CI(VL)). Tt follows that & = U Ny € PO(X :)
By Lemina 2 we obtain G = U nNUy € CIU) N FHCUW)) = GRCHU,) x CI Vl))
CHT x ) € GEICHT)). Similarly, we obtain ¢ = UNUy € CHU)NF(CL(Vy)) =
G(CH ) x CUV)) = GR(CHUy x Va)) C Gp(CI(1Vy)). Therefore, G p(g) N CIV,) # 0
for every g € . Then it i()l](mh that G is weakly precontinuous.

Sufficieney. Suppose that Gp @0 X — X x Y is weakly precontinnous. Let v € X
and GGy be any open sets of ¥ osuch that F(r) € G NG5, Then F(x) € Gy and
F{uolnGs # 0. By Flo)y € Gy, we have Gp(a) € X x ¢ and X x Gy is open in
A Y Sin(( FloyNnGy # 0, we e Grlo)N (X x Gy) = ({&} x F(x)N(X x Gy) =
{r} x ) N Gyl ) # 0. Since X x G is open in X x Y7, there exists U € PO(X, )
such tlmt G () C CHY x Gy) = X x CUGY) and G () 0 CHX x Gy) # @ for every
u € U. By Lemna 2, we obtain U7 € GL(X x CHGY)) = FHQNG,)) and henee F(U) C
CHG ). Moreover, by Lemnma 2 we obtain U C G (X x CHGy)) = F7(CHG,)) and henee
FluynCHGy) # 0 for every v € U. Therefore. it follows that F is weakly precontinnous.

Corollary 5 (Jafari-Noiri [5], Paul-Bhattacharyya [17]) 4 function [ X — Y is weakly
precontinuows of and only of the graph function g 0 X — X x Y. defined by gp() =
(. f () for cach v € X, is weakly precontinuous.,

Lemuna 3 (Mashhour et at [11]) Let U and X be subsets of a space X. The following
fiold.:

(1) If U € PO(X) and Xo € SO(X). then U N Xy € PO(Xy).

(2) If U € PO(Ng) and Xy € PO(X). then U N Xy € PO(Xyg).



Theorem 7 Let {U, : o € A} be a cover of a space X by av-open sets of X. A nultifurc-
tion I X — Y s weakly precontinuous if and only if the restriction F/U, 1 U, — Y is
weakly precontinuous for each a € A.

Proof. Necessity. Suppose that F is weakly precontinnous. Let o € A and v he any
point in U, . Let Gy, G2 be any open sets of Y such that (F/U,)(«) € GT NG5 . Sinee
F is weakly precontinuous and (F/U,)(r) = F(.r), there cxists Uy € PO(X . ) such that
F(Up) € CI{Gy) and F(u) N CLG,) # O for every u € Uy. Set U = Uy N U,, then it
follows from Lemma 3 that U € PO(U,.#). Then (F/U.)U) = F(U) C CI{Gy) and
(F/Ug)(m) N ClG,) = F(u) N ClG,) # @ for every w € U. Therefore, F/U, is weakly
precontinuous.

Sufficiency. Suppose that F/U, is weakly precontinnons for each o € A, Let o € X
and Gy, Gy be any open scts of Y osuch that F{r) € G NG5, There exists o € A such
that x € U,. Then, we have (F/U,) () = F(r) and hence (F/UL)(r) € GT NG5, Since
F /U, is weakly precontinuous, there exists U € PO(U,,, ¢) such that (F/U U ) € CI(G )
and (F/U,)(u) N CH{G2) # @ for every w € U. Since U, is a-open in X, it follows from
Lemma 3 that U € PO{X,.x). Moreover, we have F{U} C CI(G,) aud F(u)nCHGL) £ @
for every w € U. Therefore, F is weakly precontinuous.

- Corollary 6 (Popa and Noiri [21]) Let {U, : a € A4} be a cover of a space X by a-open
sets of X. A function f.: X — Y is weakly precontinuous if and only if the restriction
f/Us : Un — Y is weakly precontinuous for each o € A.

For a multifunction F : X — Y, by CI(F): X — Y [2] (resp. pCH{F): X — ¥ [19])

we denote a multifunction defined as follows: CIH{F){r) = CI(F(+)) (resp. pCHF)(r) =
PCI{(F (x))) for each xz € X.

Definition 3 A subset A of a space X is said to be

(1) a-regular [7] if for each @ € A and any open set U containing a, there exists an open
set. G of X such that e € G C Cl(G) C U, _
(2) a-almost reqular [8] if for each a € A and any regular open set U containing a, there
exists an open set G of X such that e« € G C Cl{G) C U,

(3) a-paracompact [28] if every X-open cover of A has an X-open refinement which covers
A and is locally finite for each point. of X.

Lemma 4 (Popa and Noiri [24]) If F : X — Y s a multifunction such that F(r) is
a-reqular and a-paracompact for each x € X, then

(1) GH(V) = FH(V) for each open set V of Y,

(2) G-(K) = F~(K) for each closed set K of Y, where G denotes CI(F) or pCI{(F).

Lemma § (Popa and Noiri [24]) For a multifunction F : X — Y . it follows that
(1) G (V)= F~(V) for each open set V of Y,
(2) GH{K) = FY(K) for each closed set K of Y,
where G denotes CI{(F) or pCl(F).



Theorem B Let F : X — Y be a multifunction such that F(&) is a-regular and o-
paracompact for cach v € X . Then the following are equivalent:

(1) Fis weakly precontinuous;

(2) CAFY is weakly precontinuons;

(3) pCUF) is weakly precontinuons.

Proof We put G = pCI(F) or Ci{F) in the sequel. '

Necessity. Suppose that F'is weakly precontinunons. Then it follows fromn Theorein
2 and Lemmas 3 and 4 that for every open sets Vi and Vo of ¥V, GT(V) N G~ (V) =
FHVONF~(Vy) C pInt{(FH{CUV1)) N F~(CUVa))) = put(GH(CI{V1)) NG (CL(V3))) and
hence GHUV) NG~ (Vy) C pInt(GH{CIV1)) N G—(C1(V3))). By Theoremn 2 G is weakly
precoutinuons.

Sufficiency. Suppose that G is weakly precontinnous. Then it follows fromn Theoremn
2 and Lemmas 3 awd 4 fhat for every open sets Vi and Vy of ¥, FHV)) N F~(Vy) =
GHv)NG (Vo) € plnt(GHCHVI)) NG (CY VL)) ) = pInt{ FH{CI{(V1)) N F~(CI{Vy))) and
hence FHVO)NF(Vy) C plut(FH{CH{V))N F(CI{(W))). It follows fromn Theoremn 2 that
F is weakly precontinuous.

4 Almost precontinuity and weak precontinuity

In this section, we obtain sowme sullicient. conditions for a weakly precontinuous multifune-
tion to he almost precontinuous,

Theorem 9 If F : X — Y is weakly precontinuons and F () is open in Y for each point
2 € X, then F s almost precontinuons.

Proof. Let v € X and Gq, Gy be open sets in Y such that F(x) € G N G5, Since
F is weakly precoutinuous, there exists {f € PO(X . ») such that F(U) € CI{G,) and
F(u)NCIC2) # 0 for every v € U. Since F(2) is open for each « € X, F(U) is open and
F(U) ¢ Int(CI{G ) = sCIGy). Moreover, F(u) NCIG,) # 0 and F(u) N Int(CHGy)) =
F{u)nsClGa) # 0. Therefore, F is alinost precontinnous.

Lemma 6 (Popa and Noiri [23]) If A is an a-almost reqular a-paracompact set of X and
U is a regular open neighborhood of A, then there exists an open set G of X such that
ACGcClG)CU.

Lemma 7 (Popa [20]) If A 4is an o-almost regular o-paracompact set of X and U is a
regular open set such that U N A # 0, then there exists an open set G of X such that
ANG #0 and CHG) C U. : '

Theorem 10 If F : X — Y is weakly precontinnouns and F{x) is an a-almost regulor
a-paracompact set of Y for each point v € X, then F is almost precontinuous.
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Proof. Let. Vi ¥, he regular open sets of ¥oand v € FH(V)NE(Vy), Then F () C 1
and F(e) Ny # @, Since Fr) is a-ahnost regular a-paracompact by Lemmma 6 there
exists an open set 117 such that F(r) © 19 ¢ CHWy) € ¥, By Lewsma 7, there
exists an open set 1y of ¥ osuch that F{r) N ity # @ and CI(1V,) € V. Sinee F s

weakly precontinuous, there exists U7 € PO(X.r) such that F({7) ¢ Ci(it}) C V; and
CF(i) N CLUIV,) # @ for every w € U. Thercfore, we have » € U € FH(V)) N F (V). Thix
shows that FH(Vi) N F~(V,) € PO(X). It follows from [15. Theroem 2] that F is almost
precontinuous,

5 Sufficient conditions for weak precontinuity

Definition 4 A multifunction F': X — ¥ is said to he

(1) upper almost weakly continuous [14] if for cach - € X and each open set Vcontaining

Fa), x € Int(CHET(CHVIND;

(2) lower almost weakly continuous [14] if for cach € X and each open set. Vosueh that
()

FLnV#U) v € Int(CILFT(CI(V)))).

Deﬁmtlon 5 A multifunction F: X — Y is said to be

{1) upper weakly continwouns [18} if for cach o € X and cach open set Vocontaining F(@),
there exists an open neighborhood U of v such that F(U) € CI(V),

L(2)lower weakly continuous [18] if for cach » € X and cach openset Vosuch that F{e)Nnl #
{#, there exists an open neighborhood U of o such that F () NCHV) # @ for every u € U,

Theorem 11 If a multifunction F : X — Y is upper almost weakly continwouns and lower
weakly continuous, then it is weakly precontinuous.

Proof. Let Gy, Gy be any open set of Y. Then we have FHGY) C Tnt(CHFHCHGH))))
[14, Theorem 3.1} and F7(Gy) C Int{(F~(CHG4))) [18, Theorem 4], Therefore, we have
FHGONF(GL) C Int(C'I(F*(C'l(C 1)) N It (F~(Cl (Cg) ) C
[t [CHFHCHG ) N Tuwtd F(CHG )| € Wt (CHET(CUG ) N0 F(CUG2))])-

It follows from Theorem 2 that F s W(dl\].\ precontinuous,

Theorem 12 If a multifunction F : X — Y is lower almost weakly continuows and wpper
weakly continwous, then it is weakly precontinuous.

Proof. This is shown in the same way as in Theorem 11 by utilizing [14, Theorem 3.2
and [18, Theorem 6).
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