FIXED POINT THEOREMS IN BANACH SPACES WITH NORMAL STRUCTURE

 D. K. Ganguly and D. Bandyopadhyay

 D. K. Ganguly and D. Bandyopadhyay}

ABSTRACT: This paper encompasses two theorems on the existence of a unique common fixed point and the approximation of this fixed point by lshikawa type iterative sequences, for two operators satislying property $-A^{*}$ in Banach spaces having normal structure. Moreover. certain relationship between normal structure and property - B^{*} has been established.

1. INTRODUCTION: In 1948, Brodskii and Milman |1| introduced the notion ol normal structure, an interesting geometrical property, in a Banach space. Since then it has been studying both as a purely geometrical property of a Banach space and a lindamental tool for finding the existence of lixed point of an operator. The delinition of normal structure runs as follows:

DEFINITION 1.1: Let E be a hounded sabsed of a Banach space X. A point $z \in E$ is a
 of E is said to have a normal structure if every comer subse' C' of K containing more than one point has at least one non-diametral point.

Several authors $(\{2|,|7|,|8|)$ are devoted to the study of normal structure for finding the existence of lixed point of different contraction type operators. Aecording to Kannan [7|, an operator T is said to satisly property-A over a Banach space X il it satislies
$1.1\left\|\|T x-T y\| \leq \frac{1}{2}\right\|\|x-T x\|+\|y-T y\| \| . \forall x, y \in X ;$
and also T possesses property - B over $E \subset X$, il for every closed subset K ol' E containing more
1991 Mathematics subject classification : 471110, 541125.
Key Words and Phrases : Fixed Point. Normal Structure, Property-B*, Simultancous QuasiContraction Mapping ol Order (1,1). Ishikawa type Iteration Process, Reinermann type Inlinite
than one point and mapped into itself by T, then there exists $z \in K$ such that $\|z-T z\|<\sin$, e $k y-T y \|$. Then he proved the following theorem which establishes a relation between normal structure and property-B:

THEOREM A:|G| Led K be a bounded convex subsed of a Banach space X and $T: K \rightarrow K$ salisfy 1.1. If K has normal saruchare then T satis/ies property-B over K

We shall here introduce the following delinitions in a Banach space X which will be of further use in proving our results.

DEFINITION 1.2: Two mappings $T_{1,} T_{2}: X \rightarrow X$ are said to be simultaneous quasi-contraction mappings of order $(m, n), m, n \in \angle /-$ sel of Nalural mumbers / if
 $q \in(0.1)$.

If $m=n=1$ in $1.2 \mid$ then T_{1}, T_{2} are simultaneous quasi-contraction mappings of order (1.1) and if $m=n=1, T_{1}=T_{2}=T$ in $1.2 \mid$, then T is a quasi-contraction mapping, introduced by Cirid $[4 \mid$.

We shall say that $T_{1} . T_{2}$ possess property $-A^{*}$ over X if T_{1}, T_{2} are simultaneous quasi-contraction mappings of order (1,1) with $q \in\left|0, \frac{1}{2}\right|$ instead of $q \in \mid 0,1$) and T_{1}, T_{2} possess property - A_{1}^{*} over X if T_{1}, T_{2} satisly 1.2$]$ with $q \in\left[0, \left.\frac{1}{2} \right\rvert\,\right.$ instead $\left.o \int^{\circ} q \in \mid 0,1\right]$.

DEFINITION 1.3: Let E he a hounded suhsed of a Banach space I and $T_{1}, T_{2}: E \rightarrow E$. Then T_{1}. T_{2} are said to possess propery- B^{*} over E if every closed conex whber C' of E containing more than one element and mapped into itself hy T_{1}, T_{2} hoth, has al least one point z such that

If $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}$, then the above inequality becomes $\|\mathrm{z}-\mathrm{Tz}\|<\sup , y \in \mathbb{C}\|\mathrm{x}-\mathrm{Ty}\|$. which clearly includes property- B and hence property- B^{*} extends property- B of Kannan.

Clearly A is a regular matrix $|3|$. With this matrix we shall define a generalised iteration process ofishikawa type $|6|$ for two operators as: Let E be a non-emply closed convex subse of a Banach space X and $T_{1}: X \rightarrow X(i=1,2)$. Then for any $x_{1} \in E$,
1.4] $x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} T_{1} y_{n}$ and $y_{n}=\left(1-a_{n}\right) x_{n}+a_{n} T_{2} x_{n}, \forall n \in \angle_{0}$, where the real sequence $\left\{a_{n}\right\}$ satisfies $0<a_{n} \leq c_{n}<1$ for all $n \in \angle 0$ and the real sequence $\left.c_{n}\right\}_{n}$ satisfies (i)-(iii) of $1.3 \mid$. We denote this process by $\left(x_{0}, A, T_{1}, T_{2},\left\{a_{n}\right\}\right)$ and call it a generalised iteration process for two operators T_{1}. T_{2}, determined by an initial point x_{0}, a matrix A and a sequence $\left\{a_{n}\right\}$

2. MAIN RESULTS

THEOREM-2.1: Le' E be a non-emply homaded comvex subsed of a Banach space A such that E: has normal sfruchure Let $T_{1}, T_{2}: E \rightarrow E$ possess property' - A^{*} over E and satisfiv the following condilion:
2.1/ max; \|TA-z\|. \|Tx $-z\|!\leq\| x-z \| . \forall x \in E$, and for every non-diamedral point z of E. Then T_{1} and T_{2} have a !unique common fixed point in E.

To prove this theorem. we need the following
LEMMA: Led X he a Banach space and E, a non-emply bounded comex subsed of X having normal structure. Then, corresponding to each non-diametral proint $=$ of E. there is a sequence $\left\{_{n}\right\}_{n}$ in Esuch that $\lim _{n} x_{n}==$.

PROOF: E: has normal structure and z is a non-diametral point of $\mathrm{E} \Rightarrow \sup _{\mathrm{x} \in \mathrm{E}:}\|\mathrm{x}-\mathrm{z}\|<\dot{\delta}(\mathrm{E})=$ $\mathrm{d}($ say $)>0 \Rightarrow\|\mathrm{x}-\mathrm{z}\|<\mathrm{d}, \forall \mathrm{x} \in \mathrm{E}$. Using this, we shall construct a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ in E as follows: Choose $x_{1} \in E$ and $r_{1}>1$ such that $\left\|x_{1}-z\right\| \leq d / r_{1}$.

Now, convexity of l and $x_{1}, \notin \mathrm{I}: \Rightarrow \frac{1}{2}\left(\mathrm{x}_{1}+\%\right) \in \mathrm{I}: \Rightarrow\left\|\frac{1}{2}\left(x_{1}+\gamma\right)-z\right\|=\frac{1}{2}\left\|\mathrm{x}_{1}-z\right\| \leq \mathrm{d} / 2 \mathrm{r}_{1}$:
writing $x_{2}=\frac{1}{2}\left(x_{1}+z_{1}\right)$ we have $\left\|x_{2}-z_{\|}\right\| \leq d / x_{1}$.
Again. writing $x_{3}=\frac{1}{2}\left(x_{2}+\gamma\right) \in \mathrm{I}$, we have $\left\|x_{3}-z\right\|=\left\|\frac{1}{2}\left(x_{2}+\gamma\right)-z\right\|=\frac{1}{2}\left\|x_{2}-z\right\| \leq d / 2 r_{1}$.

Similarly: we can write, lor each $n \in \angle 厶, x_{n}=\frac{1}{2}\left(x_{n-1}+\%\right) \in \mathrm{E}$ and $\left\|\mathrm{x}_{n}-2\right\| \leq \mathrm{d} /$ 2 $^{\prime \prime} \mathrm{r}_{1}$.

Now. choose $\varepsilon>0$ so that for sulficiently large $n-N>0, \mathrm{~d} / 2^{*} \mathrm{r}_{\mathrm{r}}<\varepsilon$.

Thus. for all $n \geq N,\left\|x_{n}-y<\varepsilon \Rightarrow \lim _{n}\right\| x_{n}-\not \|=0$ i.e. $\lim _{n} x_{n}=\%$.
PROOF OF THEOREM: Normal structure of E : and the above lemma $\Rightarrow \exists$ a non-diametral point $\% \in E$ and a sequence $\left\{x_{n}\right\}_{n} \in \mathbb{B} \quad \exists \lim _{n} x_{n}=2$ l"rom condition-2.1. we have $\left\|T_{1} x_{n}-z\right\| \leq$

 $\Rightarrow \quad\left\|x-T_{2} z \leq q\right\| z-T_{2} z \Rightarrow z=T_{2} \ell$.

Similarly, $z=T_{1} z$ If u is another common fixed point of T_{1} and T_{2} in E_{E}, then from property- Λ^{*}, it is easy to show that $u=z$. Consequently $z \in l$ is the unique common fixed point ol T_{1} and T_{2}.

REMARK: In the above theorem, if $T_{1} . T_{2}$ satisly properly- $\Lambda_{1}{ }^{*}$ instead of property- Λ^{*}. then in the similar way. it can be shown that T_{1} and T_{2} have a unique common fixed point in F_{2}. By means of the following example, it can be easily recognise that T_{1}. T_{2} do not satisfy property- A^{4} but satisty property- $\Lambda_{1}{ }^{*}$.

EXAMPLE-2.1: Let $X=3$ and $E=|0,1|$. Then clearly E has normal structure. Deline $T_{1}, T_{2}: E \rightarrow E$ by
$T_{I} x=\left\{\begin{array}{l}0, \text { if } x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{2}, \text { if } x \in\left(\frac{1}{2}, 1\right]\end{array}\right.$

$$
\text { and } T_{2} x=\left\{\begin{array}{l}
0, \text { if } x \in\left[0, \frac{1}{2}\right) \\
\frac{1}{4}, \text { if } x \in\left[\frac{1}{2} \cdot 1\right) \\
\frac{2}{3}, \text { if } x=1
\end{array}\right.
$$

Then $T_{1}^{2} x=0 \forall x \in[0,1]$ and $T_{2}^{3} x=0 \forall x \in\left[0,1 \mid\right.$. Therefore, $T_{1}^{2}, T_{2}^{3}: E \rightarrow I:$ Also, 0 is the unique common dixed point of T_{1}, T_{2} in E. Further, T_{1}, T_{2} satisly property- $A_{1}{ }^{*}$ for all $x, y \in E$ and for any $\mathrm{q} \in\left|0, \frac{1}{2}\right|$ but T_{1}, T_{2} fail to satisly property- A^{*} with $x=\frac{1}{3}, y=1$ and $q=\frac{1}{4}$.

3. APPROXIMATION OF FIXED POINT

Consider the class \mathbf{Q} of all quasi non-expansive mappings in $\mathrm{X} .1 f^{\circ} \mathrm{T}_{1}, \mathrm{~T}_{2}$. satislying property- A^{*}, have a common tixed point u in X, then it can be shown easily that $T_{1}, T_{2} \in Q$. Now, we shall prove the following:

THEOREM-3.1: Le E be a non-emply hounded closed convex wabset of a uniformly convex Banach space $X, T_{1}, T_{2}: E \rightarrow E$. walisfy property $-A^{*}$ over E and condition-2.1. Then for any $x_{0} \in E$ and a generalised iteration process ($x_{0}, A, T_{1}, T_{2}, a_{n \prime \prime}$), the sequences, ixnin and ininn obtained by $1 .-I /$ with icmin satisfying (i). (ii) of $1.3 /$ and (iv) $\sum_{n \geq 0} m i n\left(c_{n} . l-c_{n}\right)=\infty$ if converge. converge io a common fixed point of T_{1} and T_{2} in E.

To prove this theorem, we need the following:
LEMMA: Let X he a uniformly convex Banach space with modulus of convexity of Then, for u, v $\in X$. with $\|u\| \leq l .\|n\| \leq 1$ and for all $c \in(0.1]$. $\|$ en $+(l-c) v \| \leq 1-2 \min (c . \mid-c) \delta(\|u-v\|)$.

PROOF OF LEMMA: Obviously, we may assume that $\mathrm{c} \leq \frac{1}{2}$. Since X is uniformly convex. therefore we have, $\delta(\|u-v\|) \leq 1-\frac{1}{2}\|u+v\|$. It, now, sulfices to prove that $2 \mathrm{c}\left(1-\frac{1}{2}\|u+v\|\right) \leq 1-$ $\|\mathrm{cu}+(1-\mathrm{e}) \mathrm{v}\|$ i.e., $2 \mathrm{c}+\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\| \leq 1+\mathrm{c}\|\mathrm{u}+\mathrm{v}\|$. Now, $2 \mathrm{c}+\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\|=2 \mathrm{c}+$ $\|c(u+v)+(1-2 c) v\| \leq 2 c+c\|u+v\|+(1-2 c)\|v\| \leq 1+c\|u+v\|(a s\|v\| \leq 1) \Rightarrow 2 c\left(1-\frac{1}{2}\|u+v\|\right) \leq$ $1-\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\| \Rightarrow 2 \mathrm{c} \delta(\|\mathrm{u}-\mathrm{v}\|) \leq 1-\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\| \Rightarrow\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\| \leq \mathrm{I}-2 \mathrm{c} \delta(\|\mathrm{u}-\mathrm{v}\|)$.

Hence, in other words, we have, $\|\mathrm{cu}+(1-\mathrm{c}) \mathrm{v}\| \leq 1-2 \min (\mathrm{c}, 1-\mathrm{c}) \delta(\|\mathrm{u}-\mathrm{v}\|)$.

PROOF OF THEOREM: Since uniform convexity of X implies the normal structure of E . therefore from theorem-2.1. T_{1} and T_{2} have a unique common lixed point u, say, in E: Then. $T_{1}, T_{2} \in \mathbb{Q}$. For any $x_{11} \in E$, and for all $n \in L_{0}$.
$3.1\left\|\left\|y_{n}-u\right\|-\right\|\left(1-a_{n}\right) x_{n}+a_{n} \mathrm{~T}_{2} \mathrm{x}_{\mathrm{n}}-\mathrm{u}\left\|\leq\left(1-\mathrm{a}_{n}\right)\right\| \mathrm{x}_{\mathrm{n}}-\mathrm{u}\left\|+\mathrm{a}_{\mathrm{n}}\right\| \mathrm{T}_{2} \mathrm{x}_{\mathrm{n}}-\mathrm{u}\|\leq\| \mathrm{x}_{\mathrm{n}}-\mathrm{u} \|$, and
$3.2\left|\left\|x_{n} ;-u\right\|=\left\|\left(1-c_{n}\right) x_{n}+c_{n} T_{1} y_{n}-u\right\| \leq\left(1-c_{n}\right)\left\|x_{n}-u\right\|+c_{n}\left\|T_{1} y_{n}-u\right\| \leq\left\|x_{n}-u\right\| \| \operatorname{sing}(3.1)\right|$.
Thus, we have. for all $\mathrm{n} \in \angle_{0}$. $\left\|\mathrm{x}_{\mathrm{n}}-\mathbf{u}\right\| \leq\left\|\mathrm{x}_{\mathrm{n}-1}-\mathbf{u}\right\| \leq \ldots \leq\left\|\mathrm{x}_{0}-\mathbf{u}\right\|=\mathrm{K}$ (say).
This reveals that $\left\{\left\|x_{\mathrm{n}}-\mathrm{u}\right\|!\mathrm{n}\right.$ is a non-increasing sequence in $|0, \mathrm{~K}|$: hence it must converge to a limit. We shall show that this limit is \%ero. If not. let it be a>0. Now, we shall first show that $\lim _{11}\left\|x_{11}-T_{1} y_{n}\right\|=0$. Suppose not. Then, either (I) \exists an $\left.\varepsilon>0\right) \ni\left\|x_{n}-T_{1} y_{n}\right\| \geq \varepsilon, \forall n \in \angle_{11}$. or (II) $\lim _{n} \operatorname{inn}^{-}\left\|x_{n}-T_{1} y_{n}\right\|-0$.

For case - I]. we use modulus of convexity $\delta(>0)$ of X. Now, for all $n \in L_{0}$,
$3.3 \mid\left\|x_{n+1}-u\right\|=\left\|\left(1-c_{n}\right) x_{n}+c_{n} T_{1} y_{n}-u\right\|=\left\|\left(1-c_{n}\right)\left(x_{n}-u\right)+c_{n}\left(T_{1} y_{n}-u\right)\right\|$

$$
=\left\|x_{n}-u\right\|\left\|\left(1-c_{n}\right) \frac{x_{n}-u}{\left\|x_{n}-u\right\|}+c_{n} \frac{T_{1} y_{n}-u}{\left\|x_{n}-u\right\|}\right\|=\left\|x_{n}-u\right\|\left\|\left(1-c_{n}\right) x+c_{n} y\right\| \text {. where }
$$

$3.4 \mid x=\left(x_{n}-u\right) /\left\|x_{n}-u\right\|, y=\left(\mathrm{T}_{1} \mathrm{y}_{\mathrm{n}}-\mathrm{u}\right) /\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{u}\right\|$; then
3.5] $\|x\|=1 .\|y\| \leq 1$, and $\|x-y\|=\left(\left\|x_{n}-T_{1} y_{n}\right\| /\left\|x_{n}-u\right\|\right) \geq \varepsilon / K, \forall n \in L_{0}$.

Since δ is non-decreasing in (0,2$]$, therefore from (3.5) we have 3.6$] \delta(\|x-y\|) \geq \delta(\varepsilon / K)$.
Now, using lemma and (3.6), we can write from (3.3) that. for all $n \in \angle_{0}$.

$$
\begin{aligned}
& a \leq\left\|x_{n}+1-u\right\| \leq\left\|x_{n}-u\right\|\left\|\left(1-c_{n}\right) x+c_{n} y\right\| \leq\left\|x_{n}-u\right\|\left\{1-2 \min \left(c_{n}, 1-c_{n}\right) \delta(\|x-y\|)\right\} \\
& \leq\left\|x_{n}-u\right\|\left\{1-2 \delta(\varepsilon / K) \min \left(c_{n}, l-c_{n}\right)\right\} \\
& =\left\|x_{n}-u\right\|\left\{1-b \min \left(c_{n}, 1-c_{n}\right)\right\} \text {, where } b=2 \delta(\varepsilon / K)>0 \\
& =\left\|x_{n}-u\right\|-b \min \left(c_{n}, 1-c_{n}\right)\left\|x_{n}-u\right\| \\
& \leq\left\|x_{n-1}-u\right\|-b \min \left(c_{n-1}, l-c_{n-1}\right)\left\|x_{n-1}-u\right\|-b \min \left(c_{n}, l-c_{n}\right)\left\|x_{n}-u\right\|
\end{aligned}
$$

$$
\leq K-b \cdot a \sum_{i=1}^{n} \min \left(c_{1}, 1-c_{1}\right)
$$

$\Rightarrow \sum_{n} \min \left(c_{n} \cdot 1-c_{n}\right) \leq(K-a) /$ (ba) which contradicts (iv), as r.h.s. is finite. Hence case-l is not true.
for case - III. ヨ $\left\{x_{n_{1}}\right\}_{1} \subset\left\{x_{n}\right\}_{n},\left\{y_{n_{1}}\right\}, \subset\left\{y_{n}\right\}$, such that $3.7 \mid \lim ,\left\|x_{n_{i}}-T_{1} y_{n_{i}}\right\|=0$.
We shall show that $\lim m_{1}\left\|x_{n_{1}}-T_{2} x_{n_{i}}\right\|=0$. For this it suffices to show with (3.7) that $\lim _{1}\left\|T_{1} y_{n_{2}}-T_{2} x_{n_{1}}\right\|=0$.

Now, for any $\mathrm{n} \in \angle_{\text {l }}$. we have
$3.8\left\|\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq q \max \left\{\left\|x_{n}-y_{n}\right\| \cdot\left\|y_{n}-T_{1} y_{n}\right\| .\left\|x_{n}-T_{2} x_{n}\right\| .\left\|y_{n}-T_{2} x_{n}\right\| .\left\|x_{n}-T_{1} y_{n}\right\|\{=q D\right.\right.$ where $\mathrm{D}=\max \left\{\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right\| .\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{T}_{1} \mathrm{y}_{\mathrm{n}}\right\| .\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{T}_{2} \mathrm{x}_{\mathrm{n}}\right\| .\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{T}_{2} \mathrm{x}_{\mathrm{n}}\right\| .\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{T}_{1} \mathrm{y}_{\mathrm{n}}\right\|\right\}$.

Now, if $\mathrm{D}=\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right\|$. then from (3.8) we have on using (1.4)

$\Rightarrow 3.91 \quad\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq \frac{q a_{n}}{1-q a_{n}}\left\|x_{n}-T_{1} y_{n}\right\|$.
If $D=\left\|y_{n}-T_{1} y_{n}\right\|$, then using (1.4), we have from (3.8)
$\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq q\left\|y_{n}-T_{1} y_{n}\right\|=q\left\|\left(1-a_{n}\right) x_{n}+a_{n} T_{2} x_{n}-T_{1} y_{n}\right\| \leq q\left(1-a_{n}\right)\left\|x_{n}-T_{1} y_{n}\right\|$ $+q a_{n}\left\|T_{1} y_{n}-T_{2} x_{n}\right\|$
$\Rightarrow 3.101$

$$
\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq \frac{q\left(1-a_{n}\right)}{1-q a_{n}}\left\|x_{n}-T_{1} y_{n}\right\| .
$$

If $\mathrm{D}=\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{T}_{2} \mathrm{x}_{\mathrm{n}}\right\|$, then from (3.8) we have
$\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq q\left\|x_{n}-T_{2} x_{n}\right\| \leq q\left\|x_{n}-T_{1} y_{n}\right\|+q\left\|T_{1} y_{n}-T_{2} x_{n}\right\|$
$\Rightarrow 3.111$

$$
\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq \frac{q}{1-q}\left\|x_{n}-T_{1} y_{n}\right\| .
$$

If $D=\left\|y_{n}-T_{2} x_{n}\right\|$, then using (1.4), we have from (3.8)
$\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq q\left\|y_{n}-T_{2} x_{n}\right\|=q\left\|\left(1-a_{n}\right) x_{n}+a_{n} T_{2} x_{n}-T_{2} x_{n}\right\|=q\left(1-a_{n}\right)\left\|x_{n}-T_{2} x_{n}\right\|$

$$
\leq q\left(1-a_{n}\right)\left\|x_{n 1}-T_{1} y_{n}\right\|+q\left(1-a_{n}\right)\left\|T_{1} y_{n}-T_{2} x_{n}\right\|
$$

$\Rightarrow 3.121$

$$
\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq \frac{q\left(1-a_{n}\right)}{1-q\left(1-a_{n}\right)}\left\|x_{n 1}-T_{1} y_{n}\right\|
$$

If $\mathrm{D}=\left\|\mathrm{x}_{n}-\mathrm{T}_{1} \mathrm{y}_{n_{0}}\right\|$, then from (3.8), we have 3.13] \| $\mathrm{T}_{1} \mathrm{y}_{n}-\mathrm{T}_{2} \mathrm{x}_{n}\|\leq \mathrm{q}\| \mathrm{x}_{\mathrm{n}}-\mathrm{T}_{1} \mathrm{y}_{n} \|$.
Thus, using (3.9) - (3.13) in (3.8) we have $\forall n \in C_{0}\left\|T_{1} y_{n}-T_{2} x_{n}\right\| \leq \max \left\{r_{n}, r\right\}\left\|x_{n}-T_{1} y_{n}\right\|$ where $r=\frac{q}{1-q} \in(0,1], r_{n}=\max \left\{\frac{q a_{n}}{1-q a_{n}}, \frac{q\left(1-a_{n}\right)}{1-q a_{n}}, \frac{q\left(1-a_{n}\right)}{1-q\left(1-a_{n}\right)}\right\} \in(0,11 \forall n \in \angle 1$ and
$\lim _{11} r_{n}>0$. Therefore, $\left\|T_{1} y_{n_{i}}-T_{2} x_{n_{j}}\right\| \leq \max \left\{r_{n_{i}}, r_{i}\right\}\left\|x_{n_{i}}-T_{i} y_{n_{i}}\right\| \rightarrow 0$ as $i \rightarrow \infty$, using (3.7). Hence.
$\lim _{i}\left\|x_{n_{i}}-T_{2} x_{n_{i}}\right\|=0$.
Consequently, $\lim _{i}\left\|x_{n_{i}}-y_{n_{i}}\right\|=0$ and $\lim _{i}\left\|y_{n_{i}}-T_{1} y_{n_{i}}\right\|=0$. Further, for any $i, j \in L$.

$$
\begin{equation*}
\left\|\mathrm{T}_{2} \mathrm{x}_{n_{i}}-\mathrm{T}_{2} \mathrm{y}_{n_{j}}\right\| \leq\left\|\mathrm{T}_{2} \mathrm{x}_{n_{i}}-\mathrm{T}_{1} \mathrm{y}_{n_{\mathrm{i}}}\right\|+\left\|\mathrm{T}_{1} \mathrm{y}_{n_{i}}-\mathrm{T}_{2} \mathrm{x}_{n_{i}}\right\| \tag{3.14}
\end{equation*}
$$

Now, 3.15] $\left\|T_{2} x_{n_{j}}-T_{i} y_{n_{i}}\right\| \leq q \max \left\{\left\|x_{n_{j}}-y_{n_{i}}\right\|,\left\|x_{n_{j}}-T_{2} x_{n_{j}}\right\|,\left\|y_{n_{1}}-T_{1} y_{n_{i}}\right\| \cdot\left\|x_{n_{j}}-T_{1} y_{n_{1}}\right\| \cdot\left\|y_{n_{i}}-T_{2} x_{n_{1}}\right\|\right\}$.
Let; $\lim _{\mathrm{i} . \mathrm{i}}\left\|\mathrm{T}_{2} \mathrm{x}_{\mathrm{n}_{\mathrm{j}}}-\mathrm{T}_{1} \mathrm{y}_{\mathrm{n}_{\mathrm{i}}}\right\|=\mathrm{t}$. Then, we have

$$
\begin{aligned}
& \left\|x_{n_{j}}-y_{n_{i}}\right\| \leq\left\|x_{n_{j}}-T_{2} x_{n_{j}}\right\|+\left\|T_{2} x_{n_{j}}-T_{1} y_{n_{i}}\right\|+\left\|y_{n_{i}}-T_{1} y_{n_{1}}\right\| \Rightarrow \lim _{i_{i}, j}\left\|x_{n_{j}}-y_{n_{1}}\right\| \leq t: \\
& \left\|x_{n_{j}}-T_{1} y_{n_{j}}\right\| \leq\left\|x_{n_{j}}-y_{n_{i}}\right\|+\left\|y_{n_{1}}-T_{1} y_{n_{j}}\right\| \Rightarrow \lim _{i, j}\left\|x_{n_{j}}-T_{1} y_{n_{i}}\right\| \leq t: \\
& \left\|y_{n_{i}}-T_{2} x_{n_{j}}\right\| \leq\left\|x_{n_{j}}-y_{n_{j}}\right\|+\left\|x_{n_{j}}-T_{2} x_{n_{j}}\right\| \Rightarrow \lim _{i, j}\left\|y_{n_{i}}-T_{2} x_{n_{j}}\right\| \leq t .
\end{aligned}
$$

In view of these inequalities, (3.15) reduces to

$$
\lim _{i_{, j}}\left\|T_{2} x_{n_{i}}-T_{1} y_{n_{i}}\right\| \leq q t \Rightarrow t \leq q l \Rightarrow t=0 \text { i.e. } \lim _{i, j}\left\|T_{2} x_{n_{i}}-T_{1} y_{n_{i}}\right\|=0
$$

Using this in (3.14) we have, $\lim _{\mathrm{i}, \mathrm{j}}\left\|\mathrm{F}_{2} \mathrm{x}_{\mathrm{n}_{\mathrm{i}}}-\mathrm{T}_{2} \mathrm{y}_{\mathrm{n}_{\mathrm{j}}}\right\|=0 \Rightarrow\left\{\mathrm{~T}_{2} \mathrm{x}_{\mathrm{n}_{1}}\right\}_{\mathrm{i}}$ is a Cauchy sequence in $\mathrm{E} \Rightarrow \exists$
$v \in E \rightarrow \lim _{i} T_{2} x_{n_{i}}=v$. Consequently, $\lim _{i} x_{n_{i}}=v=\lim _{i} T_{2} x_{n_{i}}=\lim _{i} T_{1} y_{n_{1}}=\lim _{i} y_{n_{i}}$.

Again, $\left\|T_{2} x_{n_{i}}-T_{1} v\right\| \leq q \max \left\{\left\|x_{n_{i}}-v\right\|,\left\|x_{n_{i}}-T_{2} x_{n_{i}}\right\|,\left\|v-T_{1} v\right\|,\left\|x_{n_{i}}-T_{1} v\right\|,\left\|v-T_{2} x_{n_{i}}\right\|\right\}$.

Now taking limit as $\mathrm{i} \rightarrow \infty$ on both sides we have
$\left\|v-T_{1} v\right\| \leq q \max \left\{0,0 .\left\|v-T_{1} v\right\| \cdot\left\|v-T_{1} v\right\|, 0\right\}=q\left\|v-T_{1} v\right\| \Rightarrow\left\|v-T_{1} v\right\|=0$ i.e. $v=T_{1} v$. From property- Λ^{*}, it is easy to show that $\mathrm{v}=\mathrm{T}_{2} \mathrm{v}$. Therefore, v is a common tixed point of T_{1} and T_{2} in E. Since u is the unique common fixed point of T_{1} and T_{2}, hence $u=v$. Thus, $\lim _{1} x_{n_{i}}=u$ and $\left\{\left\|x_{n}-u\right\|\right\}$ monotone non-increasing, together would imply $\lim _{n} x_{n}=u$. Nlso, form (3.1). $\lim _{n} y_{n}=u$. Hence, the iterative sequences $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ both converge to a unique common lixed point of T_{1} and T_{2} in E.

4. RELATION BETWEEN NORMAL STRUCTURE AND PROPERTY - B ${ }^{*}$:

In this section, we shall establish a relationship between normal structure and property-B* which extends theorem- Λ of Kannan.

THEOREM-4.1: Let E he a hounded convex subset of a Banach space X and $T_{1}, T_{2}: E \rightarrow E$ satisfif properfy-A* over E. If E has normal structure, then T_{1} and T_{2} satisfy property - B^{*} over E.

PROOF: I et us suppose that E has normal structure. We further assume that the contrapositive statement hold. Then there exists a closed convex subset C ofie such that
$\left.4.1] \max :\left\|x-T_{1} x\right\| \cdot\left\|x-T_{2} x\right\|\right\}=\max \left\{\sup _{x, y}=C\left\|x-T_{1} y\right\| . \sup _{x, y \in C}\left\|x-T_{2} y\right\|\right\}=1(\neq 0)$ (say), $\forall x \in C$.
Then, clearly the image sets T_{1} (C) $(\mathrm{i}=1,2$) of C contain more than one element ; otherwise, for some $\mathrm{u} \in \mathrm{C}, \mathrm{T}_{1}(\mathrm{C})=\{\mathrm{a}\} \Rightarrow \mathrm{T}_{1} \mathrm{u}=\mathrm{u}=\mathrm{T}_{2} \mathrm{u}$ and therefore, $\max \left\{\left\|\mathrm{u}-\mathrm{T}_{1} \mathrm{u}\right\|,\left\|\mathrm{u}-\mathrm{T}_{2} \mathrm{u}\right\|\right\}=0$ which contradicts (4.1). Let $S=T_{1}(C) \cup T_{2}(C) \subset C$ and $D=e o[S]$, the convex hull of S.

Now for any $x, y \in D$, any one of the following holds:

$$
\begin{equation*}
\exists x^{\prime}, y^{\prime} \in \mathrm{C}, \ni \mathrm{x}=\mathrm{T}_{1} \mathrm{x}^{\prime}, \mathrm{y}=\mathrm{T}_{2} \mathrm{y}^{\prime} ; \tag{i}
\end{equation*}
$$

(ii) $\exists x^{\prime} \cdot y_{i}^{\prime} \in C^{\prime}(i=1,2 \ldots \ldots, n) \ni x=T_{1} x^{\prime} \cdot y=\sum_{i=1}^{n} a_{1} T_{2} y_{i}^{\prime}, \sum_{i=1}^{n} a_{i}=1$;
(iii) $\exists x_{i}^{\prime} \cdot y_{1}^{\prime} \in C(i=1,2, \ldots \ldots, m, j=1,2 \ldots \ldots \ldots, n) \ni x=\sum_{1=1}^{m} a_{1} T_{1} x_{1}^{\prime}, y=\sum_{j=1}^{n} b_{j} T_{2} y_{j}^{\prime}, \sum_{i=1}^{m} a_{i}=1=\sum_{i=1}^{m} b_{j}$.

Now, we shall lirst show that 4.2$]\left\|T_{1} x-T_{2} y\right\| \leq 1, \forall x, y \in C$ in fact, since T_{1}, T_{2} satisfi property $-\Lambda^{*}$ over E and $C \subset E$, therefore, for all $x, y \in C$,

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| & \leq q \max \left\{\|x-y\|,\left\|x-T_{1} x\right\| \cdot\left\|y-T_{2} y\right\| \cdot\left\|x-T_{2} y\right\| \cdot\left\|y-T_{1} x\right\| ;\right. \\
& \leq q \max \left\{\left(\left\|x-T_{1} x\right\|+\left\|T_{1} x-y\right\|\right) \cdot 1, t, 1,1 ;\{\operatorname{using}(4.1) \|\right. \\
& \leq q \max \{21, t, t, t, 1\}=2 q 1 \leq 1, \operatorname{as} q \leq 1 / 2
\end{aligned}
$$

Again, it can be easily shown for each of the above cases (i-iii) that $\|x-y\| \leq t$. So $\delta(D) \leq t$.
The same conclusion can be obtained on interchanging T_{1} and T_{2} in (i-iii).

Now, for any $x \in D,\left[x=T_{j} x^{\prime}\right.$ or $\left.\sum_{i 1}^{n} a_{1} T_{1} x_{1}^{\prime}, x^{\prime}, x_{i}^{\prime} \in(i=1,2, \ldots, n, j=1,2), \sum_{i}^{n} a_{1}=1 \mid, T_{j} x \in 1\right)$
for $\mathrm{j}=1,2$, as $\mathrm{T}_{\mathrm{j}}: \mathrm{C} \rightarrow \mathrm{C}$ and $\mathrm{D} \subseteq \mathrm{C}$. Further. from (4.1), max $\left\{\left\|x-\mathrm{T}_{1} \mathrm{x}\right\| .\left\|\mathrm{x}-\mathrm{T}_{2} \mathrm{x}\right\|\{=\mathrm{i}, \forall \mathrm{x} \in \mathrm{C}\right.$.
Thus, for any $y \in D$, there exists $x \in C$ such that either $y=T_{1} x$ or $y=T_{2} x$, and therefore for any $y \in D, \sup _{x \in D}\|x-y\|=1 \geq \delta(D)$ which contradicts the assumption of normal structure of E .

Hence the theorem follows.

REMARK: The converse of the above theorem may not always hold good which can be revealed form the following

EXAMPLE-4.1: Let m be the space of bounded sequences of real numbers with the supremum norm [5] and let $\mathrm{C}=\{\mathrm{x} \in \mathrm{m} \mid\|\mathrm{x}\| \leq 2\}$. Evidently. C is a bounded convex subset of m . Now. let $K=\left\{x_{i} \mid i \in \angle\right\} \subset C$ where $x_{i}=\{0,0, \ldots, 1.0,0, \ldots\}\left(1\right.$ in the $i^{\text {th }}$ place $)$. Then, $\delta(K)=1$. Also, $\sup _{y \in \mathbb{C}}\|x-y\|=1$ for every $x \in K$. Hence C. does not have normal structure. Now, deline $T_{1}, T_{2}: C \rightarrow C$ by $T_{1} x=0$ and $T_{2} x=1$, for all $x \in C$. Then $T_{1} . T_{2}$ possess property $-A^{*}$ over C for some $q \in\left(0, \frac{1}{2}\right]$ and also have property $-B^{*}$ over C.

REFERENCES:

1. Brodskii, M.S. and Milman. : On the centre of a convex set, Dokl. Adad. Nauk, D.P. SSSR, 59(1948). 837-840.
2. Belluce, L.P. and Kirk, W.A. : Fixed point theorems for certain classes of nonexpansive mappings. Proc. Amer. Math-Soc., 20(1),
3. Cook. R.(i. : hlinile matrices and sequences spaces, Macmillian Publishing Co. (1952), 64.
4. Ciric. I...B: 1 generalisation of Banach contaction principle. Proc. Amer. Math. Soc.. Vol.45, no.2. (1974). 267273.
5. Goffiman. C' and Pedrick. G. : I'irst Course in F'unctional Analysis, Prentice-Itall of India Private Limited. (1987), 71.
6. Ishikawa. S.
: lixed point by a new iteration method. Proc. Amer. Math. Soc.. 149 (1974). 147-150.
7. Kannam. R.
: Some results on fixed points-IV, Fund. Math. I.XXIV. (1972). 181-187.
8. Kirk. W.A. : Fixed point theory (Proc. Workshop Univ. Sherbrooke, (1980). Springer-verlag Leeture Notes No. $886(1981) .484-505$.
9. Reinermann. J. : Uber. Toeplitzehe fterations verfhen and cingie thre Anwendungen in Konslrukitven lixpun theorie, Studia Math.. 32(1969), 209-227.

> DEPARTMENT OF PURE MATHEMATICS. UNIVERSHY OF CALCUTHA, 35. BALLYGUNGECIRCULAR ROAD. CALCUTTA-700 019, INDIA.
> E-mail: msngr@cal.vsnl.net.in
> [code: 31/DHK/0007(H)]

