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PARAMETRIC VIBRATIONS AND RESONANCE

NIGAR M. ILYASOVA

Abstract

System of linear differential equations with periodic coefficients
depending on some parameters is examined in this paper.For small changing
of parameters the monodromy matrix and its eigenvalues are
constructed.We consider the problem of stability of trivial solution of the
damped Hill equation and obtain the domains of stability in the space of
parameters. Results are used for the problems of dynamic stability of
viscoelastic systems, columns and triangle plates.
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1.Introduction

Analysis of the parametric vibrations of elastic systems subjected to
time varying loadings is one of the well established areas of applied
mechanics [1]. Some important results for viscoelastic materials are also
obtained [1-6].The problem of dynamic stability of a Kelvin-viscoelastic
column is studed in [3].Deterministic as well as random time variations are
considered. The effect of viscoelasticity on the instability region is
investigated in [4] and it is found that viscoelasticity increases the stability
of the plate. The monodromy matrix method is used in [5] for determination
of stability regions of Hill equation (and there is small inaccuracy), and
such results are obtained in [6] by means of average method. The
mathematical properties of a variational second order evolution equation,
which includes the equations modelling vibrations of the Euler-Bernoulli
and Rayleigh beams with the global or local Kelvin-Voigt damping are
studed in [8].Strong asymptotic stability and exponential stability under
various conditions on the damping are investigated.Many stability results
were obtained - by the construction of appropriate Lyapunov functions.
Using this method a criterion of asymptotic stability for a linear oscillator
with variable parameters is obtained in [9].
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2.5tatement of problem and general results

Consider the system of linear differential equations
i=Alt,&)x, te(a,b), &G cR”, xeR" (1)
where the matrix 4 depends on the parameters & = (al,aZ,...,a p) and it is
T-periodic,i.e. A(t+7T,&)= A(,&) It is known that if 4 € C*[(a,,b,)x G,]
then x(t,&)e C*(G,) and if A is an analytic matrix-function of all its

arguments then the solution is an analytic function of the parameters
(Poincare).
Suppose that for the valuea, = (ay,,...,,, ) of the fitst m parameters

(m<p) of a=(a,...,a,), we may solve the system (1).Let us
consider 4 = A(t,®) and expand this function to the series in the
neighborhood of

Al @)= 4,0+ Y A (et - )+

Evolution matrix U (t, cx) of the system (1) satisfies the initial value
problem

m

ZAij(t)(ai "aio)(aj _aj0)+"’ )

=l

U=Alt,alu, U(0,a)=1 3)
If we seck the solution of this problem as

U(f, a,): Uo(t)+zUi(tXa'i "O‘io)“'“ ZUl‘j(t)(ai _aiO)(:aj "“ajo)+"'
=1

ij=1
from (2) and (3) we get the following problems

Us = Ay()U,,U,(0) =1,

Ui = A4,(O0U, + 4,(OU,U,(0) = 0,i =1,m, (4)

U:, =A,(DUy + 4;,(DU, + 4,(DU; + 4,00, U, (0) = 034, j = L,m,..
For the known U,(¢), solutions of second and third problems in (4) are
written as
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U() =U, @) {jUg' (DA @)U, (2)dr,
U,()=U, (t){]’va’ 4@V [T OAGUE [U5 64,6 e+
+ [Us 04,00, (r)[ 07 )4, U, s H

0 0

By substituting ¢ = T in U(¢,), the monodromy matrix

] 38U 1& oU
U<fa a)=U, + 2-67(&'. Uy )+ }_,"“—_' (a0, — ety X“j - a10)+
= 0,

lj]

is obtained,where U, = U, (T, czo) and all expressions

(‘;U_U jU“ a;() U, (#)dr,

2 T 2
-fU-=UO [u,” aA——Ud U“ 6AUarr jU“ﬁUds dr +
oa,0a, ; da; a,

0
T -
+ jUO“‘a_AU0 [UO“ Ay dslar |, i, j=1m
0 a (lJ a z
are written for @ = «,.

Figenvalues (multiplicators) of monodromy matrix are obtained from
the equation det[U(T')~ pI|= 0 Since

x(t + nT) = px(t + (n —1)T): e p”x(t)
and the situation ¢ — oo is equivalent ton — oo, then if |p|=1the trivial

solution x = 0 is stable,if | p| < 1- asymptotic stable,and if |p| > 1 -unstable.If

p =1 solution is 7 - periodc,
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3.Parametric Resonance

Comnsider the damped Hill equation
i+ 20+ |0 + poplt))r = 0 (5)
where , @ and p are constants,and ¢(t) is 7 — periodic function.We will

T
suppose that the mean value ¢ = -T1— _[ gp(t)alt of the function ¢(¢) is equal to
0

zero If it is different from zero,we will do it by usingw® = a)o2 + pe and
olt)=py(t)-c.
Using x=x,, x=x, we reduce the Eq.(5) to the system of linear
differental equations
X =x,, X, =—20x, - [a)2 + ,ugo(t)l\c]
Matrix of this system is represented as

Alz) 0 Yo 4, Ao =]’ :
= = + L s = s
~0t-up -2 A S ey

0 0
‘4‘:(—1 0]

The solution U () is obtained as [7]

cos ff + 2 sin it lsim Pt
Uo(t}:e/io( :e-—al a)z IB ﬂ

. o .
sin ft cos [t — Esm it

where =+’ -a’ is the frequency of damped vibrations and « is a
damped coefficient.
Let U(t) =U,(#)V (¢) ,then the problem (3) is reduced to

V= upU 4UV,V(0) =1 (6)
Assuming u suffisiently small, by the method of successive approximation
we found the following solution of the problem (6)

¢ 14 T
V) =1 +ﬂj¢UO“‘Aondr+,a2 jgoU&'AJ]O .[goUg‘Aondsdr—k...
0 0 0
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Taking into account U (¢) and V() the monodromy matrix

T T 2
U(T) = Uy(T) + pU(T) [@U;' AU d + 1*Uy (T) foUs' 4U, [pUs' 4U,dsdz +..
0 0 0

is obtained.The multiplicators of this matrix are obtained from the equation
p? = pTrU(T) +detU(T) = 0
Since

T
detU(T) = exp( jTrAdr] = exp(-2aT),
0

we use monodromy matrix to found its trace IrU(T).For this aim we
represent U(T) in the form

UT)=U(T) I +uT| o’ -

a-ablp -b/B
IB—’B«b——Zaa —a+ab/p ,u[

Y y12]+m
Ya Vn

where
1T L]
a= ZB—T_ 6fgo(r)sin 2pwdr,b= —2~l[~;—1~; qu)(r)cos 2pudv .

Since detU(T) = detU,(T') ,determinant of the matrix in the square brackets
is equal to one. Using this, we found
Yo+ yn =T (a*+b%).

Upto u* the equation for multiplicators is written as

p’~pe [2 + ,usz(cf' +b2)]cos BT +e" =0, (7)
For p =0 we get ‘

Py =e¢ " (cos B,T £isin B,T)

where S, =+, — a® . For the values S,T # kn,k =1,2,..multiplicators
are complex-conjugaté and |p,|=|p,|=exp(~@T).For a>0we sce that

lpi <l
a=0it is stable and if a<0it is unstable.For the values

,therefore the trivial solution of the Eq.(5) is asymtotic stable,if




BT =k, k =1,2,...multiplicators are real and one of them may be greather

than one.Consider this cace.From (7) up to > we have found

T

2
Ps = {(_ 1)t -_rLT.\/rkz,u2 —-(,BO MZC{E+,uc,{) e

2 2 2 2
where . =a,” +b,", 3, =\,[a)o ~a’,

T r !
a, = 1 fw(l”)sin %%’75 dr, b, = L JCD(")COSEI;_W dr, ¢, = L .[ or)dr

2k © 2kn 2k g
In ordet to be|p| = 1 the inequality
1 2 kr ?
rout 2—272—'(:2‘”—1) +(,B0 ——T-+,uckj (8)

must be satisfyes.
If T -periodic function ¢(¢) in the domain0 <z < T’ is given as Dirac delta

T (-1)* 1
t)=06|t-=|, founda, =0, b, =~—*-, ¢, =r, =——.Th
w() ( 2) we ounda, iy Cp =71, oy e

inequality (8) becomes as

2kr o TV
w27 {(e Aok S }

As we see,in order that the parametric resonance take place, the amplitude
of external actions must be greate than certain positive number.This limit
increases whenever the number of resonance domain % increase,

Up to now we put only limitation on «,that is a® < a)o2 As we

know [7], for the cases a® > a)o2 the vibrations is not take place. If
a << 1,then the condition (8) may be written as

2
a’ 4—(,80—]—;7—{+yckj <u’r’ 9)
In the space of parameters (e, @,, 1) the condition (9) is defined the half

, . . . kr
conical domains with the axis o, = ?~+ pc,and the generators
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W, =—+ pc, + pr, on the planea =0. Since 7, decreases for increasing

k the angle between this lines is narrow down.
The intersections of conies (9) with the plane o = constare the
following hyperbolas

2

w ke F pe

) kT
et - I > ]
o a

Here we found the lower bound u >% for the amplitude of external
Ve

. . . .a :
perturbation.For increasing k& the fraction — also increases,therefore the
v
k

corresponding domains of instability be far away from the @ axis.For the
caseq = 0 this domains are intersects of the @, axis [1]. If ¢, = 0, from (9)

it follows that

) ki
— ur, <@, ~~]~;<ryk, a=0.

. . . kmw
As we see, the resonance domains begin from the points @, = .The

numbers ue, are differences of the. resonance frequences and the numbers
kz/T For decreasing k the numbers ¢, and 1, are increasing ,therefore
the axises of resonance conies becomes perpendicular to the @, axis.
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o/ I'i

0 N\ /T 2n/T = WO
o

Fig.The domains of instablity,

The intesection of the domains (9) with the plane u = const are the

ellipses with the half-axises =ur, and «a = ur,,and the

w kr + e
0 T k
T

. kr , : . . . .
center is on the @, = —T———‘uc ; axis.For increasing o the instablity domains

on w, decreases and vanishes for o >, 4.

For the function @(t)=cosét we obtain a,=c, =0,b=n= %

20 . ., . :
and & =—l;°—. Since 6 =2w, for k=1, that is the parametric resonance

take place when the frequence 6 of the external action is equal to the
double eigenvalues of the systemFrom (9) it follows that
2
ut —0% =460 =16w%a’.
h
Generally,the resonance domain in the space (¢, @, , 4) consist of the union

of half space o <0 with the half horn domains on « > 0satisfies the
2

. a
conditions p* = —.
'
%
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4 Kelvin — viscoelastic column

The equation,governing the lateral displacement of a colunmn is given

by [3]
o*u o%u *u  O'u
EI + 3 +|P, + P{t)|—+ — =0
o T i B PO
where u(x,z) is lateral displacement, / is the second moment of area, p is

the mass per unit length of the column, P, is the static load, P(t) is the time

varying load and £ and 7 are the elastic modulus of the spring and the

damping coefficient of the damper in the Kelvin | viscoelastic
model,respectively.

Assuming that the normal modes of vibration of the column are given
by ¢,(x),the general series solution is given by

U(?@ t) = Z An (t)¢n (’C)
For a simply supported colurm¢g, = sin%@ and for a fixed-fixed column,

¢, is approximately given by ¢, =1- cos% , in which / is the length of

the column,
Employing the series solution in the equation of motion yields

A 428,04, +Q 21— £,(1)]4, =0 (10)

n**n

1 1
P \2 2

QII = wn 1 - —__0_ are é.n = 77" 1 - _’iQ‘
})ﬂ ‘ PIl

are the natural frequency and damping coefficient,respectively,of the
corresponding column subjected to an axial dead load F, whwre

P, = EI,*I™is the nth Buler bucking load,

! 1
Pz A(EIY: A1)
f'"(t):: () 2 ZU"= : (—j 3 77,; :“_’L—[ J 779

2\ p 202\ pE

in which
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and A, =nm for simply supported and A, =2nzx for a fixed-fixed
column.Comparison with the Eq. (5) gives

a= gnQn y W= Qn’ ﬂ?”(t) = _anf‘n (t)

The resonance domain

7 lm Q
éfﬂ,,“{n =& - Jf,, }

{5 (o] ]

is obtained from (9),where =9, \/ 1-¢& 2 For the
function P(¢) = (P, - B, )cosé in the case k=1,0= 2Q, and &, <<1,
. the condition ¢* > 165” is obtained.The right hand side of this inequality is

proportional to 77, @, and E™,

In [3] the unstable domains for damping vibrations are unfortunately
not obtained.

5.Viscoelastic plates, shells and columns

Many processes in mechanics, physics, biology, economy, ecology,
automatic regulation etc. can be modelled by hereditary equations. By
means of various methods (separation of variables,Bubnov-Galerkin
method, etc.) the problems of dynamic stability of viscoelastic plates,shells
and columns are reduced to investigation of stability of trivial solution of
following equation

yO)+ [ oy o -y

and the initial conditions y(():) = (), y'(()) =0 [4,6], where A is the frequence
of elastic vibrations, ue(t) is the time varying load and &I (t) is the
relaxation kernel.Investigation of this problem for any F(t) is practically
very important. In [6] this problem has been solved by using the average
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method. For the kernel £['(z)= ~—%5(¢),where () is Dirac delta, Bq.(10)

is obtained from (11).
The Laplace transform of the solution of Eq.(11) is calculated as

o

st + AP —eA’T (12)
where the line over the function denotes its Laplace transformation with
the complex parameter s.In order to calculate the invers transformation of
(12) it is necessary to know the poles of this function which are the roots of
the equation

‘i)- =

2+ AT =0 (13)
This equation has two complex-conjugated roots— ¢ +if, which satisfy the
system of equations

a? 4 2 = p? = &A? [e"I(r)oos frdr, 2aff =&k’ [e”T(r)sin frdr  (14)
0 0
For sufficiently small & we found the following solutions of this system by
iterations

g oy
="t v e Am 0+ A, yegt im0 e (19

where

@, = i—(llf‘c AT, +A0T,), @, = %(Ff ~T,” + 2T, + 2/1111““),

s
8§ 4

A X A r2-r?)
6, ZE Na, +T,o - Aw,l, + AoI ~"_4_1_1sr‘01-‘20 +?l—‘2s it

N c

2 2
0, = %[I‘cwz ~T.@, + Ao, + Ao, + %r‘srﬂr% + %rzs (r 2_r? )}

Ty, = [t*T()cos drdt, T, = [¢*T(t)sinedt,  k=0,1,2
0 0
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and Iy, =I",and TI,, =T, denotes the cos- and sin-Fourier transformations

o)

y‘[(sm)2 +ﬁ2]+1—_§(s>=o (16)

of I'(¢), respectively.
Let us rewrite (12) in the form

where

— VT +2as +a + p2 = A
B (s) = 5 5
(s +a) +p
Using (14) we found the following inverse transformation of this function
B(f)= f%"_e-w [T sin (- )ar
3

From (14) it follows that B(O): 2c .As we see the function B(f) may be
written as B(t) = e L™ B(s) ,where
<\ T (s—a)+2as+ B2 +a* - 1
B (S) = 2 2
s+ p
is a slowly changing function of s .Using Shapery method

50)=(56)]

§=

2

we found B(z) ~ %e’“’ , c=const. As we see the function B(t) as well as

t'e™ tends to zero for f—» oo .Since the dynamic stability take place for
large values of #,we may neglect the function B(t).Then from (16) we have
found the following equation

y"+2ay’+[0¢2 +f3? +,uqo(t)ly=0 (17)
The problem of dynamic stability analysis of viscoelastic material is now
reduced to the determination of the stability criteria for the nul solutions of
Eq.(17).The advantage of this equation is that it contain the real properties
of viscoelastic materials and similarly to the Eq.(5) which we may solved.
Depending on the material parameters «, f and px, and nature of loading

the criterion for stability varies.If we put @® =a”®+ % in (17) the Eq.(5)
is obtained.Therefore the condition (9) is written as
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2
a2+(ﬁ-—l;£+‘uckj <r’ul (18)

Here the parameter £ has defined in (15).
For the function ¢(tf)=cos@ and k=1 we found

T= —%ﬂ— ve A :%. Using the values obtained in the second section,from

(17) we found
1> 4072 +y?) (19)
If we take into account only the linear terms with respect to £ in (15) we
will get the result
u > (er0) (I“sz + Fcz),
which is obtained in[6] by Bogolyubov’s averaging method.
In addition to the results obtained in the third section we may noted that
if@ =24 and
a) ifu’ > 4-92(a2 + 7/2) the vibrations are unstablejthere is
parametric resonance;
b) if p* = 46’2(052 + 72) the motion is stable;the solutions are tends
to periodic;
c) if p’< 402(052 + yz) the motion of vibration is asymptotic
stable.

6.Triangle plate

It is well-known that if the plate is loaded by periodic forces in its plane,
instability occurs for some frequency and amplitude of the applied
force. Using similar approaches to the ones for free vibration, the dynamic
stability of equilataral triangle viscoelastic plate under the action
N, + N, cosé in its plane is reduced to the equation

A 200l 5,1 =241 cosO0)A =0
in [4],where
0= g2 psrfo de u=—’5~~w’>‘2=1—~]y‘2 u=“—~N—'——‘
280 BRI NS TOAN-N,)
st

53




2 2
N, =i7€~2~ m’ +n’ +mn), A :-4,—7?—2—2(1712 +n’ +mn)2, mn=12,-4 D= Ex o
3H 3H? p 141-7?)

and H is the height of the triangle and 4 is the thickness of plate.
Comparison with the Eq.(5) gives

w=35,, pu=2uS% olt)=-cosé.
Using the result of (9) for go(t) = cos Ot we found

i
N, >2&dL, (1 mé,i]N{l _ )2
AS N.

So that the parametric resonance take place if the amplitude of the time
varying part of external actions greater than the right hand side of obtained
inequality. This condition is not obtained in [4]. The inspection of parametric
vibrations of plate can be accomplished by the solution of Eq.(17) under the
same initial conditions used before.The condition for the parametric
resonance may be obtained from u° >46° (a2 + 2) for appropriate
notations. The results obtained in this section and in [4] are the special cases

of mentioned inequality.
For the Kelvin material we have

2 2
g, =0, & ::ﬂ’ azﬂfi 1~—]y—°— )
E 2E N,

therefore the last inequality takes the form

1

2, 2
N, > 2 “N“[lmﬂJ .

E N.
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