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F R E E VIBRATIONS of VISCOELASTIC MATERIALS 

FOR ARBITRARY K E R N E L 

N.M.İLYASOVA and M.H.İLYASOV 

Abstract 
For an isotropic viscoelastic constitutive relation in Boltzmann-Volterra 

form the problems of vibrations of linear viscoelastic materials reduce to the 
solution of a certain integro-differential equation which coincides with the 
equation of vibrations of a viscoelastic system with single degree of 
freedom. Full solution of this equation for arbitrary kernel of relaxation is 
constructed in the present article. Iteration processes for calculating 
frequency and damping coefficient are given. There are two special cases of 
the relaxation kernel that a solution for the problem involved is given. One 
is the case of the sum of exponents, in the other the kernel is the sum of 
Dirac delta and an exponent. Analysis of obtained solutions and their 
comparisons with results available in literature are performed. 
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1. Introduction 

The theory of linear viscoelasticity finds numerous technical applications, 
connected with studies of the creeps of metals, plastics, concrete rock, 
polymers, composites and other solids. This theory found extensive 
development in the last half-century. The original methods of solutions are 
worked out to solve quasistatic and dynamic problems. Special place is 
devoted to transient dynamical problems often used in rheology for the 
determination of dynamic mechanical properties of viscoelastic materials. 
First research in this field belongs to 40's, when Ishlinskiy [1] explored 
vibrations of a viscoelastic bar of standard linear body. The method of. 
separation of variables, operational method, and integral transforms, 
numerical methods are mainly used in solving dynamic problems. In [2] 
Rozovskiy investigate the problem of vibrations of viscoelastic body by 
using the operational method. Laplace transformation is used by many 
investigators [4]. This method is connected with inverse problem according 



to Mellin formula, evaluation of which is realized by the method of contour 
integral and by the theory of residues. The knowledge of all singularities of 
the integrand is necessary in the process of contour integral. This restriction 
necessitates a complete description of the kernel of stress-strain relation. 
The requirement of a more complex kernel to reflect the mechanical 
properties better makes it practically impossible to use the method of 
contour integrals. This situation is a cause of the appearance of approximate, 
asymptotic and numerical methods. In [5] method of averaging that belongs 
to Bogoliubov [6] is applied to vibration problems of viscoelasticity by 
Ilyushin and his colleagues. According to method of averaging, the viscous 
strength of material is small enough in comparison with elastic strength. The 
result obtained in [5] is found in [7] by Laplace transform method. The 
problem of free vibrations of viscoelastic system, with single degree of 
freedom has been analysed in [4] by method of complex modules. Here the 
ratio of imaginary part of complex module to its real part is considered to be 
small enough and beginning from the second, all powers of this ratio are 
neglected. Free vibrations of plates are investigated in [8] .This solution is 
constructed on the basis of generalization of results obtained in [5] and [7]. 

There are many works devoted to study of vibrations of viscoelastic 
bodies with specific kernels and models. The Voigt, Kelvin, Maxwell 
models and standard model of linear viscoelastic material are used in [9-12] 
for investigation of vibrations of viscoelastic Timoshenko beams. Kernels in 
the form of the sum of exponential functions with negative indices are often 
used [4] .The problems are solved by the method of Laplace integral 
transform, but the inverses are found by using residue theory. The 
knowledge of poles of integrands is assumed. Using this method Struik [13] 
studied a problem of free damped vibrations of linear viscoelastic materials 
and used the result for the determination of mechanical properties of 
materials. Kernels in the form of the sum of exponential functions were used 
in [22] to solve the problems of free damped vibrations of viscoelastic rods, 
beams, plates and shells. Iteration processes for calculating frequency and 
damping coefficient are given. 

This analysis shows the state of theoretical investigation of problems of 
transient vibrations of viscoelastic systems, which is in attention of 
scientists for more than 50 years. It offers no general theory about vibrations 
of viscoelastic systems with arbitrary mechanical properties. Full solution of 
this problem for any kernel of relaxation has been obtained in the given 
work. The problem is solved by means of Laplace transform and inverse 
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transforms are found by the method of contour integration and convolution 
of functions. Existence of two complex-conjugate poles with negative real 
parts of integrand in Mellin formula for any monotonously decreasing 
kernel of relaxation has been proved. Real and imaginary parts of poles, 
which correspond to damping coefficient and frequency of viscoelastic 
vibrations respectively, are found by the method of iteration. Convergence 
of the iteration procedure is proved. Detaching the effect of complex poles 
from the denominator of the integrand in Mellin formula and factorising the 
rest part in geometric progression, using the convolution of functions, the 
solution for any kernel of relaxation is found. The absolute and uniform 
convergence of series in obtained formula and its derivatives of the first and 
second orders are proved. As an example the kernel of relaxation in the form 
of the sum of derivatives of Dirac delta with single exponent is considered. 

2. Statement of Problem 

Equations of transient vibrations of flexible string or longitudinal 
vibrations of homogeneous rod, transient vibrations of beam and plate of 
viscoelastic material are 

â2w V â2w Q m d2 w 
dx2 J v ' dx2 E E dt 

- ^ - * i n t - r ) ^ r + J ^ = f , (2.2) 
o 

A2w-s]T(t-T)A2wctT + - - j - r - = ^ (2.3) 
o 

where w is displacement, E is the modulus of instantaneous elasticity, Q is 
the transverse load, m is the mass,è and D are flexural rigidities, sT(t) is 
the kernel of relaxation, s is a positive parameter which we may put equal to 
one at the end of the operation. These equations can be found in many text 
books, such as [3, 15]. 

We will consider a viscoelastic solid for which the kernel of relaxation 
eT(t) is a positive function which satisfies the condition [15] 

\éC{r)dT«l . (2.4) 

15 



for any t. For this reason we will assume £ to be a small positive 
parameter. 

To the equations (2.1)-(2.3) it is necessary to connect appropriate 
boundary and initial conditions. The initial conditions, appropriate to an 
initial stress-free state of rest, may be given by 

w = W0(x), — = Wi(x) fori = 0, (2.5) 

where W0(x) and Wx(x) are given functions. As the boundary conditions, 

for example, we may put w = 0, — = 0, for the clamped edge, and 
ck 

w = 0, —— = 0, for the simply supported edge. 
dx 

Let the load£>(x,/) for simply supported beam be represented by the 
Fourier series on x 

V 1 km 
Q(x,t) = m 2 ^ . ( 0 s i n — , 

k=l 1 

where / is the length of the beam. A solution of equation (2.2) is assumed to 
be in the form 

w(x,0 = 2 > , ( 0 s m - — . (2.6) 
k=\ 1 

For the unknown functions Tk (/) we obtain an integro-differential equation 

rn + %T„= sX] \Y{t - T)T„ (T)dr + <pn (0 , (2.7) 

where Xn = ( ^ ) 2 J A ( / 1 = i, 2 , . . .) 

are the frequencies of elastic vibrations. 

Let the functions W0 (x) and W{ (x) be represented by the Fourier series 

•A . km , , -A km 

16 



Using (2.5) and (2.6) we find the initial conditions for the equation (2.7) 

^ (0 ) = ^ , Tl(0) = Tkx. 
Exactly the same method without any alterations applies to vibrations of 

plates, shells, and arbitraiy three-dimensional bodies i f the eigenfunctions 
and eigenvalues of the elasticity problem are known. Using the method of 
separation of variables or Bubnov-Galerkin method, replacing differential 
operators with respect to space coordinates with finite differences and many 
other methods, the dynamical system of viscoelasticity can be reduced to the 
equations of form (2.7). 

The problems for equation (2.7) are investigated by many authors [4, 5, 7, 
8, 13, 15-19, 22], however the exact solutions have been constructed only 
for the exponential kernel. 

3. Solution by Laplace Transform 

The equation 

T" + X 2 T = EX2 Jr(i - T)T(t)dr , t > 0 (3.1) 
o 

will be solved for the following initial conditions 

T(0) = To, T'(0) = Tr (3.2) 

Using Laplace transform we obtain the following image of the solution of 
the problem (3.1), (3.2) 

PT„ + T, 

CO 

where T(p) denotes the Laplace integral T(p) - jT(t)e~pldt, 
o 

p is the complex parameter of transformation. The function T(p) 
represented by (3.3) and the image of kernel of relaxationT(p) are analytic 
in the right half- plane Re p > 0. 

Assume that the Laplace transform T(p) is an analytic function in the 
whole of the complex p -plane except at isolated singular points. The 
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inverse transformation of function (3.3) can be found by using the well-
known Mellin formula 

1 c+'f°° (pT+TAe"1 

T(t) = — 2 ° ' ; s d p (3.4) 
2mJitap2+X2-eX2T{p)F 

here the integration is carried out in the plane of complex variable p along 
an infinite straight line parallel to the imaginary axis and situated so that all 
singular points of the function T(p) are located to the left of this straight 
line. The calculation of this integral is usually accomplished through the use 
of the residue theory. For this reason it is necessary to know the poles and 
the branch points of integrand considered before being analytically 
continued to the left-half p -plane. Poles are roots of the equation 

p2 +Ä2 -sX2T(p) = 0. (3.5) 
For e = 0 the equation (3.5) has two solutions p{ = iX andp2 = -iX . 

Lemma. Let T{t) be a positive monotonously decreasing convex and 
continuous 

function for t >0, let it vanish for t < 0 and let the inequality (2.4) hold. 
The equation 

(3.5) has just two complex roots having negative real parts. 
Proof. Let -a±iß be the roots of the equation (3.5). Substituting 
p = -a + iß to 

(3.5) and splitting in real and imaginary parts, gives 

- °f a2+X2-ß2 * "f laß 
I > J e « T ( r ) c o s / ^ r = ^ T ^ r , s J e 8 r r ( r ) s i n / ? « / r = - ^ . (3.6) 

O 0 
Thus the equation (3.5) is equivalent to the system of two equations 
(3.6) .For convenience integrals in (3.6) are denoted by f c 

and Irrespectively. The integrals Tc and rsare convergent i f the function 
ea'T{t) satisfies the Dirichlet conditions forO < / < oo, or i f this function is 
monotonously decreasing. It is evident that each of the functions f c (a,ß) 
and Ts(a,ß) tends to zero as ß tends to infinity through any set of values 
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[20]. Using these limits from (3.6) and (2.4) we deduce the well-known 
results of the literature [3,21] 

lim — = 1, hma = ——; (3.7) 
/ l - » o o /I / l - > o o Z 

CO 

p2 * X2[l-s\T{T)dr}, « « 0 for (3.8) 
o 

From (3.6) we find 

X v" ' ' ^" X ' AX2 

By the help of (3.7) and (3.8) we may put 

* V f 2 + f 2 <1. (3.9) 

The inequalities 0 < sYc < 1 give (3 > a > 0 .Thus a and f3 are real and 
we may put ¡3 > 0. As r , > 0, from the second of the equality (3.6) we 
deduce a > 0. 

The roots a and ¡3 may be calculated by iteration procedure. From (3.6) 
we define the following system of iterations 

EX2 

f > , „ A), /L, = + «B

2

+, - ^ 2 t K + 1 >A,)]1/2« = 04,2,..., 
a 0 = 0 , A = A - (3-10) 

From (3.10) we obtain 

sT.X , , „ X , 
a = + £2Aia,+f36>, + ... , p = X-y , y + £ Xeo2 + s 92+... 

Where 
_1 
4 

®2 = | ( r B

2 - r ; + 2 A r , r l e + 2 A r „ r l f ) , 

3 = f [i> 2 + r>, - M r l c + ^ r l s -^r ,r c r 2 c +yr 2 s(r 2 -r 2)], 
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02 = f U>2 -r>, +MTlc+Aco2rls +^-rsrcr2s + yr 2 t.(r 2 -r 2)], 
CO CO 

T f c = J t k I \ t ) cos Xtdt, Tks =jtkT(t)smAtdt,k = 0X2, 
0 0 

r0c = Fc and r0s s T s are sine and cosine Fourier transforms of r(/). 

Consider the integrals 
CO oo 

f l c - jrearr(T)cosfiTdT, fu = J " re a T(r ) s in f i rd t . 
o o 

I f the integrals (3.6) are convergent then using Dirichlet theorem it is not 
difficult to prove the uniform convergences with respect to a and ¡3 for 

0 < a < s Y{G)j 2, X[l - s ] r ( r )J r ]^ < f3 < X of integrals f,, andf l c . 

Therefore, by the theorem on differentiation of an improper integral with 
respect to the parameter, the differentiation under the integral sign in (3.10) 
with respect to a and (3 is valid. The derivatives of iteration vector-
function with respect to a and /? are described by the integrals Tu and 

A A 

T l c .To estimate these integrals, consider the product of the integrals Ts and 
A 

CO co toco 

2TSYC =2\ \ea(i+')Y{g)T{r)^nPgcosPrdgdr = j j"afe,r)e a ( i + r )r($- + r) siting- + t)dgdr, 
0 0 0 0 

where Cl(g,T) = r(g)T(r)/r(g + r) is a continuous monotonously 
decreasing convex function of two variables in the domain 
X = { ( ? , r ) : s ->0 , r>o} . Besides, 
£2(0, T) = £2(?,0) = £2(0,0) = T(0), lim Q(g, r) = £20 > 0 (For the 

exponential kernel the function £2 = T(0) is constant). By the second mean-
value theorem of integral calculus there is a point (g*, r*) eX such that 

2 f , f c = £2(?*, T* ) } \ea{i+T)T(g + T) sin^fc + x)dgiz. 
0 0 
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Using functions 

scosg) ssinco „ / 
g = -r= 7 , r = - p 7 0 < s < + < » , 0 < # > < % , 

V2cos (^ -p ) V2cos(^-^) / 2 

and taking into account that f + r = s, after changing variables in the double 
integral, we find 2 r \ f c = Q,(g* ,r*)fls. By the same way 
f c

2 -f2 = Q(g** ,r**)flc is obtained, here (g**,T**)eX. The last two 

relations together with the inequality (3.9) secure the convergence of 
iteration (3.10) to a unique limit. 

The proof of the lemma is complete. 

Let us represent the image of the solution in the form 

PT„+TX pT0+Tx 

T(P) = p2 + X2 -sX2T (p + a)2 + B2 -(£X2T + 2ap + a2 -2Xy + y2) 
pT„+Tx 1 

(3.11) (p + af+fi2 l-B(p)' 
where 

- £X2T + 2ap + a2 + B2 - X2 

(p + a) + /S 

In the half-plane Rep > 0 we have \B(p)\ < l,thus (3.11) may be expanded 
into geometrical series 

T(p) = A(p)(\ + B+B2 +...), (3.12) 

where A(p) = , p T o * J \ 2 . 
(p + a)2+jB2 

The inverse transforms of A(p) and B(p)are 
T - aT 

A(t) = ea'\T0 cos fit + 1 "sin/ft] = A,e~m cos ( /» - ^ ) , (3.13) 

£"/l2 V B1 — X1 — a2 

B(t) = — Jr(r)e-a('- r ) sin/?(/- 7 ) ^ + ^ ( 2 « cos/fr + ̂  ^——sin/*) , 
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where A0 = *[T2 + (Tx- aTaf fi"2 and yr = arctan[(r, - aT0)/fiT0].As we 
see, a is the damping coefficient and/7 is the frequency of viscoelastic 
vibrations. Inaf¡5 is the natural logarithm of the decay per period of the 
damped vibration in (3.13). 

The function B(t) may be written by means of improper integrals 

B(t) = Jr ( r ) e - a ( ' - r ) sin fi(t - r)dr + — Jr ( r ) e - a ( ' " r ) sm/3(t - z)dx + 
Pi P o 

Y2 - a2 - 2AY 
+ e'al (2a cos fit +1 sin fit). 

According to (3.6) the sum of the last two terms is zero, then by substitution 
T -1 = s we have 

sX2 % 
B(t) = \T(t + s)eas sinfisds (3.14) 

P : 
dB(t) 

It is easy to see that — - — < 0 f o r i > 0 , i.e. B(t) is a monotonously 
dt 

decreasing positive function. Using (3.6) we find5(0) = 2a and the 
equalities 

•5(0 = - — {r(s)e-ai'~s) sinfi(t-s)ds= — e" fr(j)e a ' s in/?(j-0ife, 
P1, P I 

give 

B(t)<2ae'at, (3.15) 

for all t > 0. So that B(t) approaches to zero more quickly than e~m and 
5(oo) = 0. 

Remarkl. For given T(t)the calculation of B(t)from (3.14) and 
then finding its transform B(p) is not difficult .Thus, if we know the original 

B(p) • 
^ W ) = m - ( 3 J 6 > 
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from(3.11) we find required solution of the problem (3.1),(3.2) as 

T{t) = A(t) + \A(t - T)®ir)dr. (3.17) 
o 

According to (3.11) equation (3.5) may be written as 
p2 + A2 - sA2T(p) = [(p + a)2 + f32 ][1 - Bip)] = 0 (3.18) 

As a result of Lemmal, equation l-Bip) = 0has only real roots and may 
be solved easily by comparison with (3.5). 

Let us introduce kernels in such a way that 

Yl(t + Tl) = T(t + Tl), r2(t + rt +r 2 )= Jr,( / + r, - i )r ,(^+r 2 )£fe, 
o 

t 

T„it + r,+...+r„) = {rB_,(f + r ,+ . . .+v, -s)Tx(s+ r„)ds, » = 2,3,... (3.19) 
o 

Original B„(t) of the function B"(p) 

B,Xt)=—i..\rlxt+Tl+...+T,x(T^ 

r o o 

in = 2,3,...) (3.20) 
is found by using (3.14),(3.19) and the convolution of functions. 

Here 5, (t) = B(t). 
Using (3.15) and convolution of functions we find 

for all t > 0. That Bn (t) is a positive function such 
that B„ (0) = 0 in Ï 2), B„ (oo) = 0. 
Now we may write the inverse of (3.12) as 

"=i P o oo 

(3.22) 

Theorem. Let the conditions of Lemma 1 hold. Function Tit) defined 
by the formula (3.22) is the solution of the problem (3.1), (3.2). 
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Proof. First let us show the convergence of the series in (3.22).Since 
T(t) is a monotonously decreasing function, then 

r , ( / + r,) < r ( r . ) ,T2(t + r, + r 2 ) < r ( r , ) r ( r 2 ) fife = rCr j r i r - , ) / , . . , (3.23) 
o 

Using (3.23) and (3.6) we find 
30 CO 

a n n ^ 

co J1 jhl 

n=\ P 

< 
\" 

P f o P" ^V0~ 
\z +J 

P 

• I 
( 2 ^ ) " 

w! 
71 + 

P 

i.e. (3.22) is absolutely and uniformly convergent for any finite interval on 
t > 0 . 

From (3.22) we get 
co ii <)2;i oo a> I 

T\t) = A(t)+X-— f . - . f ^ ^ + r , f r ^ r + r , + . . . + r „ ) i ( i - r ) ^ ] . 
«=' P o o o 

e « ( r l + . . . + r „ ) s i n ^ . ^ s i n ^ ^ . , . ^ ^ (3 24) 

where 
v 4 ' ( 0 = - a i ( 0 + / f e - a , ( - r o sin/» + -

7̂  - a 2 I 
P 

-cos pt). 

As above mentioned, we derive 

\T^\<[{3a + P)\T\ + ^\T{-aT0\}e 
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i.e. series ( 3 . 2 4 ) is a lso a b s o l u t e l y a n d u n i f o r m l y c o n v e r g e n t f o r a n y f i n i t e 

t > o. 

F r o m ( 3 . 2 2 ) w e ge t 7/(0) = A(0) = T0 U s i n g ( 3 . 1 9 ) , w e f i n d f r o m ( 3 . 2 4 ) 

sX2T °r 
T' ( 0 ) = T, - 2aT0 + —s- j r ( r , )eaTl s i n / ^ i / r , . 

' o 

T h e use o f ( 3 . 6 ) g ives T'(0) = 7J .Thus the f u n c t i o n 7"( i ) sat isf ies i n i t i a l 

c o n d i t i o n s . F r o m ( 3 . 2 4 ) w e ca lcu la te 

r"(0 = -(a2 + /32)T(t) - 2aT\t) + Z ^ T - [•• \WTH{t + h + 
n=\ P 0 „ 

+ TJT'A* + rl+...+Tn)]ea{r'+-+T") smf3Tv..sm/3TndTv..dTn. ( 3 . 2 5 ) 

I t is easy to s h o w tha t the absolu te v a l u e o f series i n ( 3 . 2 5 ) is less t h a n 

( 2 a | 7 ; - a T o \ + \T0(X2 +a2 - B2)\)e2a'. 
W r i t i n g t he i n t e g r a l o n the i n t e r v a l [ 0 , / ] as the d i f f e rence o f in tegra l s o n 

[0,oo) a n d (t,co) a n d u s i n g ( 3 . 6 ) w e f i n d after some ca l cu l a t i ons 

' 00 s" X2" ro 00 

eX2 \v(r)T(t- v)dr = -2a?(t) + (2Xy -a2-y2)T(t) + - j . . . {[T^,,(t + 
o «=1 P o o 

+ Tl+...+rn) + Tor'n(t + r 1 + . . . + r H ) ] e a ( r , + , ' + r , , ) s i n / ? r , . . . s i n / ? r H c / r , . . . i / r „ . ( 3 . 2 6 ) 

F o r m u l a s ( 3 . 2 2 ) , ( 3 . 2 5 ) and ( 3 . 2 6 ) i n v e r t equa t i on (3 .1 ) t o i d e n t i t y . 

U s i n g ( 3 . 1 9 ) , ( 3 . 2 0 ) and ( 3 . 2 2 ) w e def ine the r e m a i n d e r t e r m 
n+l I2H+2 <O <*>(t 

e a ( r , + . . . + r / ! + l ) 

.sin/?T,...sin y5T„ + 1t/i- 1... £/T ), + ] = jBll+l(T)T(t-r)dT. 
o 

B y the h e l p o f ( 3 . 2 1 ) w e see tha t the r e m a i n d e r t e r m o f ( 3 . 2 2 ) has the same 

p o w e r o f s as the f i r s t n e g l e c t e d t e r m o f series a n d tends t o ze ro fo r 

n - > oo . I t is easy t o see tha t Rn+l ( 0 ) = 0,Rn+1 (oo) = 0 . 

T h e p r o o f o f the t h e o r e m is c o m p l e t e . 
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The function (3.22) consists of two parts. The first one describes a damped 
vibrations process with frequency (5 and damping coefficient cc. Second 
part is called transient part of solution. 

I f in the formula (3.22) we neglect all terms under the summation sign and 
take into account only the terms linear ins in (3.10), i.e. i f we put 
a = sATj2,f3 = X(\- £T c/2),we will get the result of Ilyushin and his 
colleagues [5], obtained by Bogolyubov's averaging method The approach 
[4] leads to the same result, obtained by the method of complex modules, 
where the ratio of the imaginary part of complex module to its real part is 
considered small enough and all of its powers over the first are neglected. 
The frequency and damping coefficient obtained in [8] correspond to ¡3 = (3X 

and a - ax in (3.10). 

Remark2.Equation (3.1) can be reduced to a linear differential 
equation of (N + 2)th order with constant coefficients for the kernel 

N 

T(t) = Z ? * e ' by successively 
k=\ 

eliminating the integral terms. The initial conditions also become known 
during the process [4, 16, 17, and 22]. Its solution is naturally sought in the 
form of an exponential function. Characteristic equation of this differential 
equation is equivalent to (3.5) and has the same 
roots-a ± (3-pk(k = 1,2,...,7V), so the general solution of differential 
equation may be represented as 

N 

T(t) = e'al (C, cos/3t + C2 sin Bt) + £ C2+ke-pi'. 
k=\ 

Arbitrary constants Ck (k = 1,2,..., N + 2) are determined from initial 
conditions. The solution constructed in this way coincides with the solution 
obtained in [22]. 

4. Model Kernel 

Let T(t) = -qxS'(t) + q2e~''', where qx ,q2, t] are positive numbers, S'(t) is 
the derivative of Dirac delta. For q2 =o we get the Voigt model and when 
qx = o,rj = q2s Maxwell model is obtained. For other values of parameters 
q{,q2 and 7] we may get more complicated models [14]. This kernel is not 
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monotonously decreasing and has a singularity at / = 0, so we will construct 
the solution of the problem as below. 

Let us represent the image of the solution like 

T{p)-
pT0+Tl+£X2qxT0  

p2+Â2-sÀ2r 
pT0+T{+eA2qxT0 

sXqxl 

P + 
sX qx > 

+Ä2 
e2X2q\ ^ £X2q2 • 

p + n 

~T(t) (4-1) 

where f(t) is the inverse transform of the function 

PT0+Tl T(p) = 
p2+A2 

sA2q 

P + Ç 
Here the notations 

f 
A2 = X 1 — 

s2X2q\ ^ eX2qx ,T{=TX + 
sX2qx 

are introduced. As we see, the function f(t) corresponds to the solution of 
the problem of the vibrations of a viscoelastic system with the elastic 
frequency A (if A 2 > 0) and the kernel of relaxation (/) = sqe~® for the 
initial conditions f(0) = T0,f'(0) = fx. As in the previous section it is easy 
to show that the equation (3.5) has the complex roots - a ± iß(a > 0)and a 
real negative root - p(p > 0) ,which satisfies the equality p + 2a = £ .If 

A < 0 the function T(t) is expressed by exponential functions with 
negative powers and the vibrations are absent. 

The equations (3.6) for obtaining the values a and ß corresponding to 
the kernel f become 

qß 2aß 
ß2 +(4-a)2 ~ £A: 

q(Ç-a) 
2 ' 

a2 + A 2 - ß 2  

£A2 
(4.2) 

Here we findß 2 = A 2 - 2aÇ + 3a2 

determined as 

ß2+(4~cc)2 

The iteration process may be 
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sA2q 

2 ( £ - 2 « „ ) 2 + A 2 ' 
From (4.3) we obtain 

sA2q s2AAq2q- s'q'A6 

ao=0;^=A2-2aJ+3a2;n = 0,l,2>... (4.3) 

a 2y/ V 
s2q2A 

2 ^ 5 
(lf-A2)+...y = 

sq A 2 £ 

2y/A • + 

3 ( ^ -3A 4 + 6 A 2 £ 2 ) + - ^ ^ ( - 3 5 A 6 +35A4<f + 7A2<f + <f ) + .. 
Syr 

fi = A-y,¥ = A2+e. 
The derivative of the iteration function with respect to a is estimated as 

2£A2<? \%-2a Aa\^-2a\ _2a 2A\%-2a\ 
< 1 . 

[A2 + - 2a)2] A 2 + - 2 a ) 2 A A 2 + (£ - 2a) 2 

This shows the convergence of the iteration (4.3) to unique limit. 
For f(0 the function B(t) is: 

A 2 

The use of the first of the formulas (4.2) gives B(t) = 2ae~i'. 

(2 a)" t"~x 

The function B„ (t) is B„(t) = -— e-*, / j = 1,2,... 
(n-\)\ 

From (3.22) we obtain 

f(t) = A(t) + 2a f A(t - s)<T* [1 + 2sa+...+ +... ̂  = 

f A 2 ^ 

t 
A(t) + 2a\A(t-s)e-^-2a)sds 

where ^4(0 is obtained from (3.13) by replacing 7/, to the f j . 
Using (3.13), (5.1) and (5.4) we find 

7/(0 = e~(a+sc"A2/2)l cosfit\T0 1 + -
2a^ -4a 2 

( £ - 3 a ) 2 + / ? 2 

2a7; 
( £ - 3 a ) 2 + / ? 2 

(4.4) 

• + 
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+ e 

+ 

1 + 
2a^-6a2 -Iß1 

^-3a)2+ß2 • + 

, , - • (4.5) 
^-3a)2+jB2 

It may be proved by direct substitution that the function (4.5) is the solution 
of the 

Problem (3.1), (3.2) for the considered kernel. 
The solution (4.5) may be easily obtained i f we use the formula (3.17). 
The first two terms in (4.5) describe a damped vibration process with the 

frequency ¡3 and the last term shows the transient part of solution. The 
damping coefficient is equal to a + sX2qi ¡2 .Here a is a limited number but 
the second term becomes unbounded for increasing X. In this case the 
motion corresponding to these X (X»l) disappears almost completely. 
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