Journal of Mathematics, Physics and Astronomy, New Series Volume 2 (2006-2007)

Almost Paracontact Structures and Time Dependent Lagrangians

Manuela Girtu*

Faculty of Sciences University of Bacau, Bacau, Romania

(Accepted 29 November 2007)

Let M be a smooth manifold and TM its tangent bundle. We associate to a nonlinear connection in the vector bundle $\xi: \mathfrak{R} \times TM \to \mathfrak{R} \times M$ an almost paracontact structure on $\mathfrak{R} \times TM$. As it is well-known ([1],[3]) that any regular time dependent Lagrangian $L: \mathfrak{R} \times TM \to \mathfrak{R}$ defines a nonlinear connection in the vector bundle ξ , an almost paracontact structure depending on L is obtained. Several properties of it are pointed out.

1. NONLINEAR CONNECTIONS IN THE VECTOR BUNDLE ξ

Let M be a smooth manifold of dimension n. We take $(t, x^i) \equiv (t, x)$ as local coordinates on $\Re \times M$. The indices i,j,k,... will run from 1 to n and the Einstein convention on summation will be used. The coordinates in the fibres of ξ will be denoted by (y^i) and so $\Re \times TM$ is coordinate by $(t, x^i, y^i) \equiv (t, x, y)$. A change of local coordinates $(t, x, y) \rightarrow (\tilde{t}, \bar{x}, \bar{y})$ has the form

(1.1)
$$\overline{t} = t, \, \overline{x}^i = \overline{x}^i (x^1, ..., x^n), \, \overline{y}^i = \frac{\partial \overline{x}^i}{\partial x^j} (x) y^i$$

with $rank\left(\frac{\partial \overline{x}^{i}}{\partial x^{j}}\right) = n.$

If we set $V_u E = Ker \xi_{*,u}$, where ξ_* is the differential of ξ , then $u \to V_u E$, $u \in E = \Re \times TM$ is a distribution on E (vertical), locally spanned by $\left(\frac{\partial}{\partial v^i} := \dot{\partial}_i\right)$.

One may check that setting

(1.2)
$$J\left(\frac{\partial}{\partial t}\right) = 0, J\left(\frac{\partial}{\partial x^{i}}\right) = \dot{\partial}_{i}, J\left(\dot{\partial}_{i}\right) = 0$$

one obtains a well-defined (1,1)-tensor field on E. It satisfies $J^2 = 0$ and the Nijenhuis tensor associated to it vanishes.

In the following it will be convenient to put $t = x^0$ and to use the Greek indices $\alpha, \beta, \gamma...$ ranging over 0,1,2,...,n.

A nonlinear connection in the vector bundle ξ is a distribution $u \to H_u E, u \in E^{\times}$ that is supplementary to the vertical distribution.

Such a distribution is completely determined by (n+1) linear independent local vector fields. We take these vector fields in the form

(1.3)
$$\delta_{\alpha} = \partial_{\alpha} - N_{\alpha}^{i}(t, x, y)\partial_{i},$$

*girtum@yahoo.com

200701-1

Manuela Girtu

where $\partial_{\alpha} := \frac{\partial}{\partial x^{\alpha}}$ and the minus sign is taken for convenience. We note also that $\xi_*(\delta_{\alpha}) = \frac{\partial}{\partial x^{\alpha}}$. The functions (N^i_{α}) are called the local coefficient of the said nonlinear

connection and they obey the following low of transformation:

(1.4)
$$\overline{N}^{i}_{\alpha} \frac{\partial \overline{x}^{\alpha}}{\partial x^{\beta}} = \frac{\partial \overline{x}^{i}}{\partial x^{k}} N^{k}_{\beta} - \frac{\partial^{2} \overline{x}^{i}}{\partial x^{\beta} \partial x^{k}} y^{k}.$$

If we decompose (1.3) in the form

(1.5)
$$\delta_0 = \frac{\partial}{\partial t} - N_0^i(t, x, y)\dot{\partial}_i, \quad \delta_i = \partial_i - N_i^k(t, x, y)\dot{\partial}_k$$

it comes out that (N_0^k) behave like the components of a vector field on M and $(N_i^k(t, x, y))$ behave like the local coefficients of a nonlinear connection in the tangent bundle (see [3]).

2.A PARACONTACT STRUCTURE ON $E = \Re \times TM$

Assume that $E = \Re \times TM$ is endowed with a nonlinear connection. Thus we have a decomposition $TE = HE \oplus VE$ and a local frame $(\delta_0, \delta_i, \dot{\partial}_i)$ adapted to this decomposition. We denote by $(dt, dx^i, \delta y^i)$ with $\delta y^i = dy^i + N^i_{\alpha} dx^{\alpha}$ the dual of this local frame. We consider the linear map $Q_{\mu}: T_{\mu}E \to T_{\mu}E, \mu \in E$ defined by

(2.1)
$$Q_u(\delta_0) = 0, \ Q_u(\delta_i) = \dot{\partial}_i, \ Q_u(\dot{\partial}_i) = \delta_i.$$

This is well-defined since $\delta_i = \frac{\partial \overline{x}^j}{\partial x^i} \overline{\delta}_j$ and $\dot{\partial}_i = \frac{\partial \overline{x}^j}{\partial x^i} \dot{\partial}_j$.

The mapping $Q: u \to Q_u$ defines a (1,1)-tensor field on E which obviously is of rank 2n. Moreover, a direct calculation gives

$$(2.2) \qquad Q^3 - Q = 0.$$

Thus Q defines a f(3,-1)-structure on E.

Furthermore, we have

Theorem 2.1. Let $E = \Re \times TM$ be endowed with a nonlinear connection N. Then E carries an almost paracontact structure (Q, δ_0, dt) .

Proof. We have $dt(\delta_0) = 1$ and from $Q^2(\delta_0) = 0$, $Q^2(\delta_i) = \delta_i$, $Q^2(\dot{\delta}_i) = \dot{\delta}_i$

it follows that $Q^2 = I - \delta_0 \otimes \delta t$, q.e.d.

We notice that $dt \circ Q = 0$.

The tensor field that by its vanishing assures the normality of the almost paracontact structure (Q, δ_0, dt) reduces to the Nijenhuis tensor field N_Q associated to Q since dt is a closed 1-form (see [2]).

We recall that $N_Q(X,Y] = [QX,QY] + Q^2[X,Y] - Q[QX,Y] - Q[X,QY], X,Y \in \chi(E)$ Here $\chi(E)$ is the module of vector fields on E. In order to evaluate N_Q in the local frame $(\delta_0, \delta_i, \dot{\partial}_i)$ we firstly notice that $[\delta_\alpha, \delta_\beta] = R^i_{\alpha\beta} \dot{\partial}_i [\delta_\alpha, \dot{\partial}_i] = \dot{\partial}_i N^j_\alpha \dot{\partial}_j, [\dot{\partial}_i, \dot{\partial}_j] = 0$ where

20070I-2

Manuela Girtu

$$\begin{split} R_{\alpha\beta}^{i} &= \partial_{\beta} N_{\alpha}^{i} - \partial_{\alpha} N_{\beta}^{i} + N_{\alpha}^{k} \dot{\partial}_{k} N_{\beta}^{i} - N_{\beta}^{k} \dot{\partial}_{k} N_{\alpha}^{i}.\\ \text{By a direct calculation one gets:}\\ N_{\varrho}(\delta_{0}, \delta_{i}) &= -\dot{\partial}_{i} N_{0}^{j} \delta_{j} + R_{oi}^{j} \dot{\partial}_{j}\\ N_{\varrho}(\delta_{0}, \dot{\partial}_{i}) &= -R_{oi}^{j} \delta_{j} + \dot{\partial}_{i} N_{0}^{j} \dot{\partial}_{j}\\ N_{\varrho}(\delta_{i}, \delta_{j}) &= (\dot{\partial}_{i} N_{j}^{k} - \dot{\partial}_{j} N_{i}^{k}) \delta_{k} + R_{ij}^{k} \dot{\partial}_{k}\\ N_{\varrho}(\delta_{i}, \dot{\partial}_{j}) &= -R_{ij}^{k} \delta_{k} + (\dot{\partial}_{j} N_{i}^{k} - \dot{\partial}_{i} N_{j}^{k}) \dot{\partial}_{k}.\\ N_{\varrho}(\dot{\partial}_{i}, \dot{\partial}_{j}) &= (\dot{\partial}_{i} N_{j}^{k} - \dot{\partial}_{j} N_{i}^{k}) \delta_{k} + R_{ij}^{k} \dot{\partial}_{k} \end{split}$$

The almost paracontact structure (Q, δ_0, dt) is normal if $N_Q \equiv 0$. Thus we have **Theorem 2.1.** The almost paracontact structure (Q, δ_0, dt) is normal if and only if the conditions:

- (i) $\dot{\partial}_i N_0^j = 0$,
- (ii) $R_{0i}^{k} = 0$,
- (iii) $\dot{\partial}_i N_0^j = \dot{\partial}_i N_i^k$,
- $(\mathrm{iv}) \quad R_{ii}^k = 0\,,$

hold good.

Remark 2.1. The condition (i) says that the covector (N_0^j) does not depend on the directional variables (y^i) . The tensor field $t_{ij}^k = \dot{\partial}_i N_j^k - \dot{\partial}_j N_i^k$ is called the torsion of N. Thus (iii) says that N is without torsion.

The condition (ii) and (iv) are equivalent with $R_{\alpha\beta}^i = 0$. This means that N is without curvature. Equivalently, the horizontal distribution is integrable.

3. AN ALMOST PARACONTACT STRUCTURE ASSOCIATED TO A TIME DEPENDENT LAGRANGIAN

A smooth function $L: \Re \times TM \to \Re, (t, v) \to L(t, v)$ is called a time dependent Lagrangian.

It is said that L is regular if the matrix $g_{ij}(t, x, y) \coloneqq \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j}$ is of rank n on E.

Theorem 3.1. [1] The functions $N_L = (N_0^k(t, x, y)), N_i^k(t, x, y))$, where

$$N_0^k(t,x,y) = \frac{1}{2} g^{ki} \frac{\partial^2 L}{\partial t \partial y^i}, \quad N_i^k(t,x,y) = \partial_i G^k(t,x,y),$$
$$G^k(t,x,y) = \frac{1}{4} g^{ki} \left(\frac{\partial^2 L}{\partial y^i \partial x^h} y^h - \frac{\partial L}{\partial x^i} \right)$$

are the local coefficients of a nonlinear connection on E which is completely determined by the regular Lagrangian L. Having N_L we can construct an almost paracontact structure as in Section 2. This will be completely determined by L. We denote it also by (Q, δ_0, dt) . Let us consider a particular case as follows.

200701-3

Assume that $\Re \times M$ is endowed with a Riemannian metric of local coefficients $\gamma_{ij}(t,x)$ and set $L(t,x,y) = \gamma_{ij}(t,x,y)y^iy^j$.

Thus we get a regular Lagrangian with $g_{ii} = \gamma_{ii}$.

By a direct calculation we find

$$N_0^k(t, x, y) = \gamma^{ki} \frac{\partial \gamma_{ij}}{\partial t} y^j$$
$$N_i^k(t, x, y) = \gamma_{ij}^k(t, x) y^j$$

where $\gamma^{k}_{ij}(t,x)$ are the Christoffel symbols constructed with $\gamma_{ij}(t,x)$. By Theorem 2.1, the almost paracontact structure (Q, δ_0, dt) associated to $L(t, x, y) = \gamma_{ij}(t, x, y)y^{i}y^{j}$ is normal if and only if the metric $\gamma = (\gamma_{ij})$ does not depend on t (because of (i)) and it is locally flat (because of (ii) and (iv)). We notice that condition (iv) is satisfied whenever N is derived from a regular Lagrangian. Given a regular Lagrangian, we have a regular matrix $(g_{ij}(t,x,y))$. Its entries behave like the coefficients of a (0,2)-tensor field on M, that is they define a d-tensor field on E. For general notion of d-tensor field we refer to [3]. Assuming that the matrix $(g_{ij}(t,x,y))$ is positive definite we can obtain a Riemannian metric on E as follows:

 $G(t, x, y) = dt \otimes dt + g_{ij} dx^{i} \otimes dx^{j} + g_{ij} \delta y^{i} \otimes \delta y^{j}.$ Differently saying $G(\delta_{0}, \delta_{0}) = 1, G(\delta_{i}, \delta_{i}) = g_{ij}, G(\dot{\partial}_{i}, \dot{\partial}_{i}) = g_{ij}.$

We have

Theorem 3.2. The Riemannian metric G satisfies the following equations G(QX,QY) = G(X,Y) - dt(X)dt(Y),

 $dt(X) = G(\delta_0, X)$

The proof is immediate. The Theorem 3.2 says that (Q, δ_0, dt, G) is a Riemannian almost paracontact structure associated to a regular Lagrangian.

REFERENCES

1. Anastasiei M. – The Geometry of Time-Dependent Lagrangians, Math. Comput. Modelling, Vol. 20, no. 4/5, pp 67-81, 1994

2. Mihai I., Roşca R., Verstraelen L. – Some Aspects of the Differential Geometry of Vector Fields, PADGE, Vol. 2, 1996

3. Miron R., Anastasiei M. – The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Academic Publishers, FTPH 59, 1994

200701-4