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The study is devoted to analytic investigation of propagation of longitudinal 
transient waves in laminated elastic composite half-space. The problem is solved 
by using Laplace integral transform method. The recurrence relation between the 
powers of - reflection coefficients for neighbouring layers are obtained. This 
makes easy to find the inverse Laplace transforms. The solutions obtained are 
analysed for finite value of time. The solution for periodically layered half-spase 
is obtained as particular case. 

1. INTRODUCTION 
Dynamics of elastic solids has important application in seismology and in many branches of 
tecnology. Moreower, it is well known that wave propagation is a powerful method of 
investigation in determining physical and mechanical properties of material systems. 
Longitudinal and transversal waves propagating in the materials, is sensitive to the elastic 
properties of the material [1-12]. Wave propagation in laminated composite materials is very 
important and very difficult [2-12]. A new effective analytic method has been proposed in [3] 
to solve the transient wave problems in laminated elastic composite with any non-
proportional hereditary proreties of components. Propagation of SH waves through laminated 
composite materials was studed in [12] by using the transfer matrix method. 
The paper is devoted to analytic investigation of propagation of longitudinal transient waves 
in laminated elastic composite half-space consisting of the homogeneous isotropic layers 
lying on the homogeneous and isotropic elastic half-space. The problem is solved by using 
Laplace integral transform method. The recurrence relation between the powers of reflection 
coefficients depending on the parameter of the Laplace transform for neighbouring layers are 
obtained. This makes easy to find the inverse Laplace transforms. These are analysed for 
finite values of time. The solution for periodically layered half-spase is obtained as particular 
case. 

2. FORMULATION OF THE PROBLEM 
The work is devoted to studying one-dimensional plane waves in laminated half-space with 
simpliest structure consisting of the homogeneous isotropic layers with plane-paralell bounds, 
occupying the domain 
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and elastic modulus pm,Am,p„ (m = l,2,...,iV + l) and its state is defined with the field of 
small elastic displacements um (x,t) satisfying the equation of the motion 
d2u 

— c.. 2 à u -, H^<x<Hm9 t>0 (2) dt2 '" dx2  

where cm — yj(Am+2pm)fpm is the velocity of longitudinal waves. At instant t = 0 the 
media are in their natural nonperturbed state. It is required to construct the solution of 
equation (2) in each domain of m medium satisfying the initial conditions 
«„=0, —*- = 0 t = 0, Hm_{<x<Hn dt (3) 
and the boundary conditions expressing the continuity of displacement and equality of stress 
across the bounds x — Hm 
" » = " M + 1 » ^ « = ^ 1 » x = R

m > ( 4 ) 

and the given condition on the exterior bound of medium 

fi(o>0=-/(0» t > 0 - (5) 

Besides, the conditions indicated there must sayisfy the boundness of the solution uN+1 (x,t) 
for ;e-»co.Here <jm{x,t) = (Xm-\-2p,m)dunJdx is normal stresses. 
Note the problem of obtaining the displacement fields uin[x,t) is correct, i.e. there is a 
unique solution which continuously depends on the date. 
We solve problem (1.1)-(1.4) using the Laplace integral method. Removing the 
non-difficult procedures, we write the final solutions in the Laplace transform (here the bar 
above the function denotes its Laplace transform with the parameter p ) 
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where xm = x - , 0 < xm < hm and 
,-2M«+I/CJJI+1 PmCm-P, 

1 + 1 Pn,Cn,+P* 
(7) 

are the reflection coefficients. The series in (6) represents the geometric series and 
convergent absolutely and uniformly as |#,„|<1- According to (6) we find the Laplace 
transforms of stresses 
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For obtaining the inverse Laplace transforms of the solution, let us simplify the expression of 
,-2PA»+I/C,» 

-2/J,WiM» 

Here we find 
t.. 
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il + 6* 0 e-2M'"l/<Wl Y 
Using the inequality \&in+l exp(-2phm+lfcm+i)\<l, the function Z>; may be represented in the 
form 

' =Y(-\Y & 9r+j { J ]'e c"»> 

Noting r + j = km+i and denoting that (/c„,+1-l)![(m~l)!(^„+l-j)!]"' - q'^1 is the binomial 
coefficient, after substituing into and grouping the similar terms, we find the 
following recurrence relation connecting with the powers of $m+l 

( < o = q ciyt:1-^1 [i-ei]. (io> 
Noting the fact that the coefficient of the reflection 6N - 90N does not depend on the 
parameter p (thus hN^x-co), by the successive application of formula (1.9) we find 

2hlll+]km+]p 2h/ii+2km+2p 
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Now from formulas (5) using (11) we find 
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+ X 4 
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Here for m = N,N + l we define 
2AA 2Am+l/rm+1 
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(x,t) = cr. HN_i,t—- + Z0. 
N J * * = 1 
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Here the notation 

is defined. For the displacement field, in the first layer w, (xj) we take 

y - +f 
-i J 

Satisfaction by formula (1.12) the equation of motion, initial and boundary conditions are 
easily seen. It is seen from (1.13.) that if pNcN = pN+lcN+l (6QN - 0 ) the reflection waves on 
the plane x = HN is absent. For pN+lcN+l - > 0 we have #ow -> 1, then the reflection takes 
place as in the case for the free boundary.,i.e. for the layered plate with the finite thickness 
HN, but for pN+]cN+i —» oo, 0ON -> - 1 reflection takes place as it does from absolutely hard 
bound ( N layered plate lies on the absolutely hard half-space). 
The sum in formulas(1.2) for each concrete time consists of finite number of the terms 
because all functions included in it are equal to zero for negative values of their arguments. 
Each term in (1.12) describes the influence of the waves coming to the first layer after the 
reflection from the corresponding boundary. For calculating the amplitude of these waves 
it is necessary to define the coefficients A^+' (0Om) where km and km+l are the numbers of the 
reflections from the m and m +1 layer,respectively,which for given time are defined by the 
formulas 

2k * 2 = 
c2i-A, c2/c, t-hl/c1-...-hmJcn  

2KK 
Here the bracket denotes the whole part of the number in it. 
Some of coefficients A^,H (0Om) for 0Om e [0,l] are given in the Table. For the negative 0O 
the formula 
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4:i-\8^H-T 4r {K\) w 
will be used. 
From the tables it is seen that \A%mtl | < 1 which denotes the quick convergence of series in 
(1.12). 
Li the applications we often meet the medium with periodic structure, hi this case formulas 
(1.12) are rapidly simplified. For example, for the twice component periodical medium 
PlCl = PlCl = - = P2»>-\Cl,„-i = - , PlC2 = A C 4 = - = P2I„C2»I ~ -

Then 

4 K ) - ^ ) when y + n = 2/c; /Ç (0Om ) = -A] {9M ) when 
y + n = 2A + l , it = 1,2,... (15) 
Thus in this case, it is sufficient to know only A", [$0l ) . 

The Table 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

A 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 
A -0.099 -0.192 -0.273 -0.336 -0.375 -0.384 -0.357 -0.288 -0.171 
4 0.0099 0.0384 0.0819 0.1344 0.1875 0.2304 0.25 0.2304 0.153 
A -0.001 -0.008 -0.024 -0.053 -0.093 -0.138 -0.174 -0.184 -0.138 
A 0.0001 0.0015 0.0073 0.0215 0.047 0.083 0.1224 0.1474 0.124 
4 0.188 0.384 0.541 0.672 0.75 0.768 0.714 0.576 0.342 
A -0.9603 -0.844 -0.664 -0.436 -0.1575 0.0512 0.2397 0.3312 0.2717 
A -0.194 -0.353 -0447 -0.456 -0.375 -0.215 -0.014 0.1613 0.212 
A 0.029 0.107 0.209 0.2956 0.328 0.2765 0.134 -0.046 -0.161 
A -0.001 -0.006 -0.0179 -0.027 -0.023 0.011 0.082 0.169 0.198 
A 0.029 0.115 0.245 0.402 0.562 0.691 0.749 0.691 0.459 
A 0.201 0.529 0.610 0.684 0562 0.322 0.021 -0.244 -0.318 
A 0.911 0.668 0.328 -0.020 -0.281 -0.373 -0.264 -0.008 0.205 
A -0.094 -0.155 -0.161 -0.110 -0.023 0.058 0.089 0.043 0.039 
A 0.019 0.064 0.109 0.1208 0.082 0.006 -0.059 -0.058 0.017 
A 0.0004 0.03 0.096 0.212 0.375 0.552 0.691 0.736 0.552 
A 0.058 0.214 0.418 0.591 0.652 0.552 0.268 -0.092 -0.322 
A 0.0125 0.206 0.214 0.148 0.0306 -0.078 -0.118 -0.058 -0.051 
A 0.845 0.45 -0.008 -0.318 -0.328 -0.039 0.351 0.519 0.269 
A -0.036 -0.516 -0.380 -0.054 0.234 0.263 0.021 -0.197 -0.032 
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