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Bornological spaces of entire functions represented by

Dirichlet series having slow growth

Mushtaq Shaker* and G.S. Srivastava®*

ABSTRACT

The study of spaces of entire functions was initiated by V.G."Ij/éf J[6]
and the space of entire functions represented by Dirichlet series has been
studied by Hussein and Kamthan [4] and others. Patwardhan [9] has
successfully studied bornological properties of the spaces of entire function in
terms of the coefficients of Taylor series expansions. In this paper we have
used another norm and study the bornological aspects of the space I~ of all

entire Dirichlet series a(s) = Zan exp(sA,) of order zero.

n=l

1. INTROBUCTION

Let C denote the field of complex numbers equipped with usual
topology. Let I” denote the family of all transformations:
o.: C~» C such that '

(1. a(s) = ian exp(s4,,),

n=1
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where A, >4, ,4,20,limA =w,s=0+it (o,f real variables), and

H) 0

n+l n >

{a, }1 is any sequence of complex numbers. Set

1 .
(1.2) hmsup 22 = [,

H—) 0 n

Let ¥y and 7 be the abscissa of convergence and abscissa of absolute
convergence of o (s).

Then Bernstein [1,p.4], proved that

(1.3) O0<y-7< D",
and

logla,|™
(1.4) <y = limsup ———g——‘—"L

Thus if D* <o and y = co,a(s) represents an entire function and by (1.3),

r = o so that the series (1.1) converges absolutely at every point of the finite

complex plane. Further, for D" = 0, we get
_ 0
(1.5) T =y = limsup ——"— X

It is well known that the function o(s) is an analytic function in the half plane

<7 (—w <7< ), Wenow assume that D" =0 and

(1.6) T = limsup ———
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It is well known that the transformation given by (1.1) represents an
entire function for ¢ = o , Kamthan and Gawutam ( [7] and [8] ) gave the set [”
the topology of uniform convergence. They situdied the properties of bases
of the space /" using the
growth properties of the entire Dirichlet series. For o € 17, we set

M (o,a) = M (o) = Lub.|alo+ir)).
—w<f <

Let p be a non-zero positive real number and 7" now denote the family of all
entire Dirichlet functions o having Ritt order p, [11]. Then every o € I can

be characterized by the condition ‘

A ,
(1.7) limsup 21108%

n-se 1()gla,,,'"1
It is obvious that the above class of entire functions leaves a big subclass i.e.
those entire functions for which p = 0. To further study the growth of such
entire functions, the notion of logarithmic order is used [5]. Thus an entire

function a(s) is said to be of Ilogarithmic orderp if

limsup loglog M (o) =

p,lsp=soo.
oo logo

2, DEFINITIONS ,

The bornological aspect for entire function have been studied by
Patwardhan [9] and others. The authors studizd these properties for spaces of

entire functions represented by Dirichlet series. So far in the étudy of these
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growth properties of entire functions have not been taken into consideration,
The piresent paper is an effort in this direction.

In this section we give some definitions. We have
2.1. A bornology on a set X is a family B of subsets of X satisfying the

following axiorns:

(1) Bisacoveringof X,ie. X = UB;

BeB

(i) B is hereditary under inclusion, i.e. if 4 € B and B is a subset of X

contained in 4, then B € B:
(iii) B is stable under finite union.
A pair (X, 'B) consisting of a set X and a bornology B on X is called a
bornologicdl space, and the elements of B are called the bounded subsets of X
2.2. A base of a bornology B on X is any subfamily B, of B such that every
element of B is contained in an element of B_. A family B, of subsets of X
is a base forr a bornology on X if and only if B, covers X and every finite
union of elements of B, is contained in a member of B, . Then the collection
of those subsets of X, which are contained in an element of B, defines a
bornology B on X" having B, as a base. A bornology is said to be a bornology
with a courttable base if it possesses a base consisting of a sequence of
bounded sets. Such a sequence can always be assumed to be increasing,
2.3. Let i be a vector space over the complex field C, A bornology B on E
is said to be a vector hornology on E, if B is stable under vector addition,

homothetic transformations and the formation of circled hulls or, in other
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words, if the sets A+B, A A4, U77 A belong to B, whenever A4 and B belong to

Jnl=1

B and Ae (. Any pair ( EB) consisting of vector space E and a vector
bornology on E is called a bornological vector space.

2.4. A vector bornology on a vector space £ is called a convex vector
hornology if it is stable under the formation of convex hulls, Such a
bornology is also stable under the formation of disked hulls, since the convex
hull of a circled set is circled. A bornological vector space (£, B) whose
bornology B is convex is called a convex bornological vector space.

2.5. A separated bornological vector space (£, B) or (a sepafated bornology
B) is one where {(} is the only bounded vector subspace of £ .

2.6. A set P is said to be bernivorous if for every bounded set B there exists a

t € CtzOsuchthat Bz P forall e C for which | 7 | < |t|

2.7, Let E be a vector space and let 4 be a disk in £ not necessarily

absorbent in £. We denote by E, the vector space spanned by 4, i.e. the

space U/’LA = LJ/"LA.

Ao Ak

2.8, Let E be a bornological vector space. A sequence {Al‘n} in £ is said to be

M-convergent to a point x € E if there exists a decreasing sequence {tn} of

. ) X, <x|
positive real number tending to zero such that the sequence {—"——_} is

/

n

bounded.
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2.9, Let E be a separated convex bornological space. A sequence {xn} in E is

said to be a bornological Cauchy sequence (or a Mackey-Cauchy sequence) in

E if there exists a bounded disk B < E such that {xn} is a Cauchy sequence
in E,. For more details we refer to [3].

3. THE SPACET

Let p > 1 be any positive real number. Further we assume that I°
denotes the space of all entire Dirichlet series satisfying (1.1) to (1.7) and

(3.1 limsup loglog M(c) <

p <+,
7o logo

It is known [10] that (3.1) is satisfied if and only if

1
(3.2) limsup og4,

T~ loglogga" T

< p-1.

For an entire function ¢ ( s ), define the number “ o3 || by
(3.3) lo| = lub)a, ||W"',n. > 1.
Foreach a € I', we define

(3.4) loip+5] =3 |a, et
1

where & > 0 is arbitrary, On account of (3.2), (3.4) is clearly well defined. Let

' (p,&)denote the space I equipped with the norm || p+d H We define a

bornclogy on I~ with the help of ,l : ” defined by (3.3). We denote by B, the
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set {a‘ el H o [[ < k}. Then the family B, = {B, 1k = 1,2,...} forms a base for

a bornology B on /.
We now prove

Theorem 3.1. (I", B) is a separated convex bornological vector space with a
countable base.

Proof. Since the vector bornology B on the vector space I~ is stable under
the formation of the convex hulls, it is a convex vector bornology. Since the
convex hull of a circled set is circled. B is stable under the formation of
disked hulls, and hence the bornological vector space ({, B) is a convex
bornological vector space. Wow to show that {0} is the only bounded vector
subspaces of /7, we must show that I~ contains no bounded open set. Let

U (&) denote the set of all @ € I such that [[ a [! <€.
To prove the result stated, it is enough to show that no U (¢) is bounded, that
is;, given U (¢), we have to prove that there exists U (n7) for which there is

no ¢ > 0 suchb that U (&) c:cU (17). For this purpose, take 7 = :;: Given a

positive number ¢ , we can find a sufficiently large positive integer

' )'In
A, so that ]c]”l"’ <2, Let o= (g] exp (S lm). Then
& o & - tit l‘ —
|| =hisoae [J (@) but ni l’;;‘;?'(a S j> “Z =17, so that ¢’
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does not belong to U(n) thatis, @ ¢ cU(n). This shows that U(s) is not

bounded. Thus {0} is the only bounded vector subspace of /7, and hence
(I;B) is separated. Since B possesses a base consisting of increasing sequence
of bounded sets, B is a bornology with a countable base. Thus (/;B) is a

separated convex bornological vector space with countable base. This proves

Theorem 3.1.
Theorem 3.2. B contains no bornivorous set.

Proof. Suppose I contains a bornivorous set 4 . Then there exists a‘set B, e
B such that 4 < B, and consequently B, is also bornivorous. We now assert
that if i, > i, then ¢ B, ¢ B, forany e C which leads to a contradiction. If
i >0, it is‘easy to see that ¢ B,.‘ ¢ B, forany i € C such that It[ =1, Now
we prove that ¢ B, ¢ B, for any t € C such that |tt <1 also., Let thus
!t! <1l. Since i /i>1l, we can choose n such that

1< 1/M < (i, /i) Nowleta, € C be such that i* /lt! < {a” ‘ <i{ and let

A /4, R
a=aqae’™, Then “a || = Ia” ! <1 and hence

> and hence

e B,.l . Now “ ta” = ”ta" 2% “ o | ta, ‘IM"

fa & B;. Thus tB, ¢ B, forany t € C. This proves Theorem 3.2.

The following result is due to FL. Hogbe and Nlend [2].
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Theorem 3.3. The Mackey-convergence in a bornological vector space E is
topologisable if and only if £ has a bounded bormivorous set.

Combining Theorems 3.2 and 3.3, we get the following:

Corollary 3.1. The Mackey-convergence of I is not topologisable.

Proof. Suppose the Mackey-convergence of I is topologisable. Then by

Theorem 3.3 I has a bounded bornivorous set and this contradicts Theorem
3.2,

4. 5-NORMS O I’

We define, for each § > 0, the expression

(4'1) “a . p+5” = 5: lante«/{,,(9+5)/(,0+81‘—1);a eTl.

n=1
It is easily seen that, for each ( p,d ), (4.1) defines a norm on the class of
entire functions represented by Dirichlet series. We shall denote by 1"( p,6)

the space I" endowed with this norm. We denote by B, the hornology on I”

consisting of the sets bounded in the sense of the norm “ a:p+4d " We now

prove

Theorem 4.1. B = UB‘S.

8>o0

Proof. et B = B . Then there exists’a constant, J such that ;]a” < J forall

a = i:ane”“" & B. Then lan ’W" <J forall n. ‘

n=1
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~ —(+8 - ]-
(Choose & >0, such that ¢ (#*MP+é-D o 7

Then J"n < e/‘u(,0+6)/(p+5_1) ,

or
‘a" g (PO IED o phe g hilprdIereD s s 5 where J > 0, we have
o o [_P_“L_ pto) ]
(B 46 - P VIT = ey
Zldn |e n(pra) lpré-l) }Je p+ Pré-1) 5, >6,
n=l n=1
< o0, ‘

&»0

Hence B €B; andso B ¢ LJB(;‘

For the reverse inclusion let B €B, then there exists a constant J

such that for all « eB,”a:p—kJ“ <J,

)
ie. E)T‘Ia” et (pra)(prd-1) <J
camuf
==}
i 14 ) ety YA
i.e. la” ’ v M (ex,,(pm)/(p,a ‘)) a1
i.e. all < Lub g 4 glesdprsl o
' f

Thus F/ €B and henerB s < B. This completes proof of Theorem 4,1.
&>0
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Lemma 4.1. In the topological dual I” of I", every functional is of the

form

o “oQ
_ % ™ s : | 1
fla) = 2. C 0= Z‘ a,e™, if and only if the sequence

e -
{l c, ]e"mp’“‘s)/(”*a")} is bounded.
Proof. Suppose that f(«) is a continuous linear functional on I”. Then
there exists £ > O such that

| f(@)|<sk|a:p+6| forevery a.
Let w,=e" and f(y,)=c, (n>1).

n

o)
- UREERTIN o : - -
In I, :‘Z a,e”™ =lim }" a7, . Since f is continuous, we have
n=1 o

f(a) = f(limZai e“”)
H—>0 o]
= HmZai Sl

3
= lim Z a; c,
H—>0 7

o
o
= a C

non’
i

Also lcn| < k” v, ;p+5“ _ e otV o) ‘

Then {lc [e”"(*’*‘”“*’*‘s"‘)}: ke 2 (ot 8) Kpt5-1)
n ’ *
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Hence {| c, [e"ﬂ"("”)“"*‘s””} is bounded for all n=1,2,....
Conversely let {| c, le_i"(’”‘s)/(p*ﬁ"’) } be bounded for all n=1,2,....

Iet f be defined by

- o
— ‘:"‘ ~ — 34, . . | .
Sfla) = L.Cndy,, @ = Za” e’ , then f is linear functional and

n=l n=l

o

<Selle,

n=t

| /(@)

Tfe e ol a or some k
< i A, (p+8Y(p+S-1) f k>0
vcf n

ne=l
= k”a:p»!—é’” forall « .
Hence f() is continuows on 7. This proves Lemma 4.1,

Theorem 4.2. The bornological dual 7™ of I is the same as its topological

dual I .

Proof. Let I' be the vector space of all linear functionals on the vector
space I, Forevery f eI and a e I" we denote by < a, f > the scalar f
(a ), i.e. the value of lincar functional f at the function « ,tthe map
T'x T -» K defined by (a, f) =< a, f > is a bilinear form on I'x T called
the canonical bilinear form. Let T' be the topological dual of 77, i.e. the
vector space of all continuous linear functionl on 7. Since [ is a subspace

of T', the restriction of the canonical bilinear form induces a duality between
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I" and I, Since I is locally convex space and separated, it follows from
Corollary 2 to Theorem 1 of [3] that this duality is separated in /.

Let the vector space [I° " be the set of all bounded linear functionals in
the sense of bornology on I° which is a separated by Theorem 3.1. We can
induce a duality between I and I~ by using the bilinear form
(o, f)=<a,f >=f"(a), for e I' and f" el . This duality is called
the bornological duality between 7~ and I°

Let ¢ be the space I, endowed with the locally convex topology
associated with the hornology of 7. Since, algebraically, I~ "= (tr ) [the
topological dual of /], we see that the bornological duality between 7 and

I'", is ideritical to the topological duality between ¢ and (/).
Thus the proof of Theorem 4.2 is complete.
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