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TRIANGULAR CONVEXITY
by

S. AKDOGAN

In this paper a condition modifying the standard convexity conditions in
mathematical literature up to now and so called “(m,#)-triangular convexity”
has been introduced and obtained some results about it.

CHAPTER ONE
GENERALITIES

1. The prolific nature of the definition of ordina.rj/ convexity has given
rise to a considerable amount of research and this because the condition impos-
ing that the line segments determined by any two points of a set belong to the
set has the possibility of being weakened in various ways to reveal several interest-
ing new properties.

One way of doing this is to consider the property mentioned above to be
true only for the intersection of the set with the neighborhood of a point belong-
ing to the set which, in fact, gives rise to local convexity at the point. Some oth-
er ways are the consequences of certain orders and restrictions imposed on the
points belonging to the set.

- The cases which have proved to be the most interesting up to now are the
ones that correspond to one of the following conditions :

i) For each m distinct points of a set .§ (m = 2), at least one of the (%)
possible segments determined by those points is contained in S.

if) For each m distinct points of a set S (m > 2), at least 2 of the (%) pos-

sible segments determined by those points for 1 < n < (%) are contained in S,

For m = 2 the above condition reduces to the one used to define convexity
in the ordinary sense.

'} The author wishes to thank Prof. Dr. (Giacomo Saban for his support and valuable
suggesti_ons he had made during the preparation of her thesis.
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i#f) For each pair of points in § there exists a sequence of no more than
m-1 points in § such that the given two points may be joined by a polygonal line
having m or fewer sides, all contained in S.

fv) For each m distinct points of S, with m odd, taken in a given order and
such that the line joining any two consecutive points is not in S, the initial and
final points of this m-ple are joined by a line contained in S.

Of the above, case { has been examined by several authors, mainty by Valen-
tine [*] for m = 3 and it is named the three point convexity property whereas for
arbitrary m points the set is said m-convex: alternatively it is often said that the
set has in this case the property P,,? ; case ii has been examined in detail mainty
by David C. Kay and Merle D. Guay ['], and called by these authors (m, n)-
convexiry. If a set has the property defined by the condition iif this set is said to
have the property L,, whereas if a sct verifies the condition mentioned in the case
iv it is said to have the property P, . Sets having the property L, have been exam-
ined in the papers ['] , [*] , [}] and sets having the property P, in [?] and [?].

All the conditions mentioned above use different combinations of line seg-
ments defined by points belonging to the set and require that these segments
lie entirely in the set or at least guarantee this for a certain number of them. Hence
new combinations appear to be inevitable foundation of new properties.

It is the purpose of this work to introduce a new condition, reached in a
similar manner, and to deduce propertics from this condition as well as inter-
relations between this property and the ones listed above.

‘Although a Hausdorff linear space I over the reals can be assumed as a
setting for what follows, it may be sometimes necessary to restrict the discussion
to sets § contained in 2-dimensional Huclidean space E2

Throughout notations used by F.A. Valentine in [°] will be used. Further-
more a closed triangle with vertices x, y, z will be denoted by xyz and similarly
an open triangle will be denoted by (xyz).

CHAPTER TWO

TRIANGULAR CONVEXITY

3. Our main concern will be the study of the consequences of the condi-
tion expressed in the following definition:

1.1. Definition, In any linear space 2 , a set S will be said to have the

Ty, property (ot to be (m, n)-triengular convex) if it contains at least m points

?) By extension, scts that are (m, n)-convex will be said to have the property Py
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such that s > 3 and if for each m distinct points of S at least # of the (43 possible
closed triangles determined by those points are contained in S5, m being the
lowest and » being the highest integer giving rise to such a property.

Obviously this condition has a meaning for values of the integers m and »
related by the inequality
m(m 1D — 2)
6

(1.1.1) l=n<

Furthermore it is necessary to assume that
dimp & = 2.
1.2. Remarks :

i) 1If aset §is(m, 1)-triangular convex (or equivalently, has the T 1 property)
it will be said to be m-triangular convex or to have the T, property.

iy Every convex set K in & has the T, property.
iii) Conversely, if a set S in & has the property T, , S must be convex.

2. It is possible to exhibit examples of sets that are (m,n)-convex without
having the T'; property for some pairs of integers (v, s} satisfying a condition of
the form 3 < r<m, 5§ < n.

2.1. Consider a set .5 which is the union of a convex set K and p isolated
points &, ,..., k,

) S=Kuik ,..k,} .
This set is obviously (p + 2,1)}-convex, where m = p + 2, » = 1. However S
lacks any 77 property for 3 < r = p + 2 since S is (p 4 3)-triangular convex.

2.2, A similar situation can arise with connected sets as can be seen in the
following example: Let 4 = (abc) denote an open triangle and call § the set
obtained as the union of 4 with its three vertices :

S=4u {a, b, c}.
Then S is neither 7, nor T, though it is (4,3}-convex and (5,3)-triangular con-
Vex.
2.3. An open polygon to which are added some of its vertices chosen in a

convenient order can supply a suitable example of a set having the 7', property
for any pair of integers m, n satisfying (1.1.1). In particular the utilization of reg-
ular polygons in such examples causes no loss of generality.

For instance the set S obtained as the union of an open hexagon and the
set formed by the odd (or even) numbered vertices has the T, property and in or-
der (o obtain an example of a set having the property 7, (s> 3) it is sufficient
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to add to the set considered above s-3 isolated points. Similarly, an open hepta-
gon together with four of its vertices (chosen so that three non consecutive verti-
ces are omitted) yields an example of a set that is 7,%. In order to obtain a set ha-
ving the property T,? (s > 4), again it is sufficient to add s-¢ isolated points to
the above set,

3. In order to make a comparison between (m,n)-triangular convexity
and (p, g)-convexity it is convenient to return to example 2.2. § is an example
of a set that has the P property without having any one of the properties P,
P,, P, ¥, Although for every choice of 4 points in S at least 3 segments, deter-
mined by pairs chosen amongst these 4 points are contained in 5, it is obvious that
any quatuor of points, taken in S does not define even one closed triangle con-
tained in S. This example is sufficient to show that the property 7, is a stronger
condition (m, s)-convexity.

3.1. Propositiecn. The connected union of m closed convex sets which is
(m + 1,1)-convex is not (s,1)-triangular convex for any s satisfying the ine-
quality 3 < s << 2m + 1

Before giving a proof of the above statement it is helpful to go over an exam-
ple to show that the condition of (m-1,1) convexity, imposed on the union of
the m closed convex sets, is necessary.

The closed star-like pentagon which can be expressed as the union of no
less than 3 closed convex sets has the P; property but it has neither 7%, T, nor
T, property since it is (6,1)-triangular convex whereas the set which consists of
the union of two closed convex sets is (5,1)-triangular convex and accordingly
which has not T, , T, property still has the P, property. In the first example the
set is connected union of 3 closed convex sets and it does not fulfil the requirement
of (4,1)-convexity hence the assertion of the proposition does not hold, How-
ever in the second example since the required condition is satisfied, that is, since
the union 5 has the P, property for m = 2, the set has also, as claimed, the T2
property for s = 2m -- 1.

To prove the statement, let .S be the connected union of m closed, connected,
m
convex sets K, (f=1,...,n) which is (m1,1)-convex. In this case since § = U K;
i=1
is connected, none of the components of § can be isolated points. Therefore it
is always possible, because of the convexity of the sets X, , to find two distinct

#) It is sometimes argued that any set that has the P! property has the P, property:

Fi
however in this paper the definition will be accepted to mean that # is the integer that denotes
the greatest number of closed segments that any m-ple of points chosen in § can define, where
n1 is the least integer giving rise to such a property.
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sets of m points belonging to S, such that none of the segments determined by any
two points of one such set is contained in S, Let any two such subsets of § con-
taining exactly m points be

=P Py P}
x, = {q! >y ""’qm} >

where p; ,q; 6 Kiand p;p; ¢ S, ¢:g; ¢ S for 1 = 7,7 =< m. Thus it is possible
to get m segments contained in § without forming a triangle contained in S by
means of the points belonging to the sets £, and X, . To verify this assertion
call S, the subset of S defined as follows:

SOZ):IU22={p!,qI ""’Pm’qm} .

Since K; is convex for each i=1,...,m, every pair (p;,q;) of S, determines a
segment p,q; — K;. Hence p;q, is contained in .S. However for pairs such as
(p;, q;) no such thing can be asserted. For any triple { p;,p;, q,} or {p;,4;.9,}
(where 7 # j # k) the segments p, p; or g, ¢, will not be contained in S and triv-
ially no segments will be contained in S for {p,,p;,p} or {g;, ;.9 (G.jk
=1,..., m), because of the hypothesis. Therefore no triangle contained in § can
be obtained when using as vertices 3 of the 2m points of S, . So S, which is formed
by 2m points of S gives rise to at least m segments all contained in S, but to no
triangle. If we add any s & S to S, and denote this new subset of S as

Sy =28, v {5}

we will obtain two or more segments in addition to the m segments all contained
in S, depending whether s € K\ Ker.§ or 5 € Ker. S. In the first case, that is
if s & K\ Ker.S, s, p,, q; € K; will form sp, ¢, = K; < § due to the convexity
of K; . In the second case a greater number of triangles will be obtained but this
is really irrelevant since we are interested in computing the least number of trian-
gles contained in S by using 2m 41 points of S. Thus S has the 7,,,,, property.

4. The previous remarks enable us to conclude that though there exist
sets that are (m, n)-convex without being (r, s)-triangular convex, the converse
is never true: if a set is (m, m)-triangular convex then it is (r, s)-convex. However
a determination of some limitation for the integers r and s appears to be quite
difficult. Only for sets which are (m,[)-triangular convex the following inequal-
ities hold:

3=r<m , l=s<3.

For example a closed set formed by two closed triangles having a vertex in com-
mon is (5,1)-triangular convex and (3,1)-convex. Neveriheless a closed triangle
and two isolated points also form a set which is (5,[)-triangular convex but
(4,1)convex.
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When # is taken equal to m, s will have as lower bound 3, but as its upper
bound it will have some value M, such that

M = 3n.

It is possible to express M in terms of m. The following proposition introduces
M in terms of m.

4.1. Proposition. A set S ¢ 2 having the property T, (m = 3) is also
{(m,s)-convex, where

Y e s emdt 14+ (—D™ [m——?;} _f_[m—?;]z

2 2 2
([r] denotes the greatest integer = r). :

Proof. Consider a set S having the property 7, ; then any subset formed
by m points chosen at random in § defines one closed triangle contained in S.
The problem is to establish the highest possible number of closed segments con-
tained in § without forming any other triangles,

For this purpose assume that the vertices of the single existing triangle are
the points
(a) X1, Xy 5 Xy

and the remaining points of the m-ple are

(b) Xy Xy e X

m*

Let o, denote the set formed by the points in (a) , o, that formed by the points
shown in (b) and let

i=o0,U0,,

Furthermore let o,; denote the set having cardinality »; of points of o, that are
joined to the vertex x; . Thus

0, =0y VO, Uo,
and
card. ¢, = n, +n, +n,=m — 3.

At this stage the question is to investigate all possible combinations amongst
m points and, eliminating certain cases after making comparisons between them,
to reach the optimal combination that can occur,

i) Suppose n is the maximum number of segments that can be drawn amongst
m — 3 points of o, without these segments forming a triangle: then the set X
may define n 4 3 segments contained in 5 but this number can be increased by
joining a point of o, to a point of o, because any such segment will not give
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rise to a configuration containing a second triangle. Hence it would be false to
assume that the maximum number of segments contained in S is reached by a
configuration in which points of o, are not joined to points of o, . This implies
that the configuration having the greatest number of closed segments is reached
when all the points of o, are joined to some point of &, .
Observe that from any point of o, one can draw at most one segment to a
3
point of o, : indeed if x; € o, == o,;, only one of the segments
=1

X; X, XX, X; Xy

belongs to S, otherwise, as x, x;, x, x, and x, x; are contained in 5 by our
initial assumption, if more than one of the segments x; x; (j = 1,2,3) from x;
were drawn, a second closed triangle contained in § would be formed, Therefore
it is clear that the segments such as xx; for j # i where x € 5,; and x; € o, ,
i,j e {1,2,3} would not be counted when the maximum number of segments
contained in § are considered. The only segments that satisfy the restrictions
mentioned above and hence suitable to our purpose are the ones that can be
drawn between the points of any two of o,,, { e {1, 2,3} ; otherwise (that is if
we take three points each element of one of the o, , ie {1,2,3})a second
triangle, different from x x, x, would be formed against the initial assumption.
Under these circumstances in order to obtain the optimal combination it is
sufficient to choose the set ,, with the greatest cardinality amongst o,,,0,,,6,,
and multiply its cardinality with the cardinality of the remaining two sets of o,
respectively and add to their sum the cardinality of £ .

Suppose
card. 6,, = n, < card. 5,, = n, < card. G,, = #,

then
*) s(ny,m, 0, ) =mnym, -nyn +m
will denote the possible maximum number of line segments.

iy The second stage of our proof is to observe the various kinds of possi-
ble distributions of the m—3 points according to the segments joining them to
one of the three vertices. This distribution can be as follows :

a) Every point belonging to ¢, can be joined to a single vertex.

b) The m — 3 points belonging to &, can be distributed between any two
of the three vertices.

¢) The distribution of these points may occur between all three vertices.

fif) Assume all the points of o, are joined to the same vertex of o, . Then
no other segment can be added to the configuration without forming a further
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closed triangle contained in .S, because this segment would be joining two points
of o, , already joined to one of the points of o, . Thus the assumption that all
the points of o, are joined to the same vertex of o, yields as maximum number
of segments the value m since by (¥)

s{o, 0,m — 3) = card, T,

This value is not the maximum one attainable {unless s = 4, because if m = 4
there is no other possibility), as can be shown by considering the case in which
one point of o, is joined, say to x, and all the remaining m — 4 points to x, .
Obviously the maximum number of segments that can be drawn in this case is
obtained when x, (the point joined to x,) is also joined to the m — 4 points of
G, so that the configuration has 2m — 4 segments, Clearly for m = 5

2m —4 >m

so that the maximum is not reached when all the points of o, are joined to the
same vertex, chosen in o, .

iv) Under these circumstances it is necessary to investigate the case where
the points of o, are joined to the two vertices of the triangle x, x, x, .

An “equal distribution” or “almost equal distribution” of the m — 3 points
between any two vertices gives a higher value than an arbitrary distribution.

a) Assume m — 3 = 2k, Then by “equal distribution” we shall understand
that k points are to be joined to each of the two vertices. In this case, again from (¥)

o, kK, k) =Fk>+m.

If, in fact, k -+ r points were joined to one vertex and &k — r points were joined
to any one of the other two vertices, then the maximum number of lines joined
that could be drawn for this arbitrary distribution would be

ok —rk+nn=m+ik—r
and
sto, k —r,k+ry <so, k, k).

B) Assume m — 3 =2k + 1. Then for an “almost equal distribution”
(whereby we understand that k1 points are joined to one of the three vertices
and k points are joined to another one of the remaining two), we have

so,k+ L=k 1+kt+tm.

Suppose again an arbitrary distribution in which k& +r -1 points are
joined to one vertex and k—r points to the other. The maximum number of lines
that could be drawn would be

s{o, k+r+Lk—n=kB+k—rr4+m

and again
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sio,k+r+1Lk—r <sle,k,k+ 1D
On the other hand if we are to consider an arbitrary distribution in which & +
points are joined to one vertex and & + [ - r points are joined to any one of
the remaining two
slo, k+rk+1—r=kKF+k+m+r—r*
=< s(o, k. k+1).
Tt follows that no matter whether m — 3 is odd or even, the maximum number

of segments is obtained by means of an “equal” or “almost equal distribution”.

The results obtained in (o) and (B) can be expressed. by means of a single
formula by writing

o —— i e o 2
s(z):m—l-]+( 1) m3_i_m3 '
max 2 2 2
¥) An equal distribution of the m — 3 points of T between the three vertices
leads to a number of line segments that is smaller than the one obtained in the case
of an egual or almost equal distribution between only two vertices.

Assume m — 3 =3p and let 5 denote the number of segments reached
nax

in this case. Then

s =m+p* -+ p*=m+2p.

nax

Since
p_m—3
3
_ m _ — Z
5(2):m+1+( " [m 3+m 3
max 2 2 2
then

_ 2
2 4

mnax

>m+—2§—(n!1c~~3)2 = s

max

s@ = g
max max
If the distribution between the three vertices is not equal then there are two alter-
natives. That is either
no=mn, #Fn,
or

noFE R, F o,
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where n, (i = 1, 2, 3) indicates the cardinality of each subset of L such that the
elements of these subsets are joined to x; . Assume that n, = n, # n, then either

o =n,>=>m
or
Ho= 0, <Ry,
where
card. &, = n, +n, +n,.
Assume n, =n, > n,.
{#) First claim is sGr*, n*, (m — 3} ~2n*) = s(n,, n,, ny), where
m* =max {m |20, +m;=m—3, i,je (1,2,3),i#j}.
In order to prove the first claim it is sufficient to show
s n ) <<s(m, + 1,n +1,n,—2)
for ny =n, > ny.
s, ny L, m)=m+nk
sy +Lny +1Ln,—2y=m+ @ +D*+m + Dn,—2)
and
mAnltmn,<smtnttnn—1+n,.
Equality holds for #, = I and n, = 0 is excluded since this particular case cor-
responds to a distribution between two vertices.
(#) Second claim is s(n*, w*, (m — 3) —28%) > s(u,,n, .0 ) for n, =
Hy < Hq .
(a) If m—3=2p then
s(r*, %, (m — 3) —2n%) = s(p, p, 0} = m | p?
and
sy, mon Y =m+2mn, .
Since
2n 4+ ny=2p and 2% =2p
2nitny
2

n* =

To prove the claim it is sufficient to show

" @n, + )

m + > M
r 4

= m + 2ny,

or

2 2
dn® +4dn o, +n® = 8nyn, .

Since (2n, — n,) = 0 the above inequality always holds.
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(b) f m—3=2p41 then
s(rt,n* (m—3) —2n") =s(p,p, V=m+p* +p
and for n, =n, < n,
sty ,n ,n)=m-+2nn .
‘We can prove the claiﬁ using the same argument as before :
2, +n,=2p +1
implies '
sy, n ,n)=m-+ 2pn, +n, — nt
and this reduces the question to show the validity of the following inequality
mtp*+p=m+42pn; +n,—nt;
since (p — n,* = n, — p is always true, the claim is proved.
‘We can now conclude by the previous claims (7) and (i) that when », =
n, ¥ 1y the maximum number of segments can be obtained for the distribution

of m — 3 points between the three vertices, when n, = s, represents the greatest
possible equal distribution out of m — 3 points, for the two vertices.

The last step of the proof is the comparison of s(n*, n*, (m — 3) — 2n%)
with s(n, , n, , n, ) for n; # n, ¥ n, . Before that a remark has to be made con-
cerning s(n*, n*, (m— 3) —2n*) . :

s, m, (m — 3) —2n%) = 52
max
To verify this assertion, it suffices to consider that (m — 3) —2n* is equal to 0
or 1 because of the definition of #*, which in fact amounts to the two cases in-
vestigated in (o) and (B). '

To complete the proof let n, # n, # n, and n, << n, < n, , then

sy ny ) =m +nyn, +ngn, =59,
max

For m — 3 odd
s(n*, %, 1) = m + n*2 + n*
and for 'm — 3 even ' '
s(n*, n*, 0) = m | n*2,

Now to compare s& with s(n*, #*, 0) consider that
' max

n +n, 41y = 2%,
Then
ny (1, + 1y ) = ny (2% — ny) = 2n¥ny — nd < ¥,




12 . : 5. AKDOGAN

since
(n* —n, )2 =0.
This gives

s =m 4 fy (n,+n)=<m-in= 5@
max max

The same argument can be used for m — 3 odd, Therefore no matter whether
m — 3 is even or odd

RE R

max max

This completes the proof.

4.1.1. Remark. The limit values in the statement of the proposition can
be effectively reached, as'is shown by the following examples ;

() Let (abc) be an open triangle and p, be any point of (#bc). Consider

the set :
S ={{abc) U ab U {c}}\ {Po} -

This set is 7 as can readily be seen by drawing the lines ap, and bp, and taking
on them two points d and e respectively, both lying in (#bc) on the segment op-
posed to p, with respect to and b. Then the set‘{a, b, c, d, e} , consisting of five
points of S, defines only one closed triangle ede, contained in S, and six seg-
ments namely ab, ge, ec, bd, dc and ed all contained in S. Therefore the set is
(5,6)-convex, 6§ being exactly the maximum number of line segments that can
be attained according to the first proposition,

(B) The minimum number 3 is obtained by considering a set $’ such that
S = (abc) U {k, , Lk}
where k, , k, are isolated points. B
" An intermediate value, for example s =4, is obtained in a set which is the un-

ion of two many-pointed convex sets,

4.1.2. Result. Remark 4.1.1 shows that the inequality of :pl;oposition 4.1
can not be sharpened. : ;

4.1.3. Remark. For m = 4

3<s=<4,

if we furthermore assume that the set S considered in the above proposition is
closed and connected, by Theorem I of Kay and Guay ['], S is convex.

5.1. Theorem. If S< & and § is closed, (mm)-triangular convex set,

1 (m—2) m—2 ‘

ER e
ion of a closed convex set S, and of & isolated points not in S, , where k satisfies
the condition '

with » > , then either S is convex or else S is the un-

(ma-k) =n.
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Proof. If §is convex, there is nothing to prove. If § is not convex, then there
exists at least a pair of points x and y, such that xy ¢ S, If furthermore S is as-
sumed to be connected, it is possible to find two sequences of points,

X= {‘xf}iED 4 Y= {yf}jED
and two directed sets D, E such that for all ie D, je E, x; and y, belong to the
set S and ‘ '

lim x; = x . limy;=y.
i€ty JjeE

Since S is closed, there would also have to exist i,e D and Jo € I such that
for alt { = i, and for all j = j, .

%Ny d S,
Then it would be possible to obtain m points, adequately chosen from these

points x; and y;, all belonging to § such that the number of triangles defined
by this particular m-ple, contained in 5, is at most

2()

if m is even and equal to 2r,

if m is odd and equal to 2r 4 I.
In the first case, }
_2r =D —2)  2r(2r—2) 2r—4)

2 - 2
_mlm —2)(m—4) _ (m—2) (m*—dm)
24 24
1 (n1m2)‘1'mn1*2 -
3T 6

and in the second case

" 202r=2)2r—4) | rr—1)

26 +6) ” =
L= D=3y m=5 Q-2
_(m—2)(m— D(m—3)
24

24 - 2 24

_ (m —2) (m? — 4m + 3) _ (m—2) m—2
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Since

1 m—2 m—2_ 1 m-—2° m-—2
> — . - = —_. —
3 23 24 3 2 6
the above results contradict in each case the hypothesis that S is (m,n)-triangu-
lar convex; hence S must be convex,

If S is not connected, by the previous argument, each of its components
has to be convex. But then the condition given for n implies that only one of the
convex components of 5 can have infinity of elements and all the remaining have
to reduce to singletons. Then let S; denote the convex component of S and p,,
Py seees Py be the isolated points of S; as S is (m,n)-triangular convex, the integer
% has to satisfy the condition

m= (")
5.1.1. Remark. If m =4
1 (m—2 m—-2_ 1 1 1

30 0 24 3 12 4

So for n =1 the assertion of the theorem is satisfied, hence any closed connect-
ed set S having the property T, is convex or else, if not connected S is the union
of a convex set S; and a single isolated point {k,} , that is
S=25 U {k;}
which confirms Remark 4.1.3. Furthermore, since for m = §
1 (m—2 m—2

L,
3 8 24

Theorem 5.1 can not be applied to a closed set having the property 7. Indeed
the union of two closed convex sets {(e.g. two triangles with a common veriex)
is (5,1)-triangular convex and is neither convex nor the union of a convex set
and some isolated points. c

5,2, Theorem. Any closed set S — & having the property P, has either
the property T, or T.

Proof. Let S © & be a set having the property P,. Then by the results
of Mc Kinney [’], S is the union of two convex sets S, and S, such that the un-
ion is not convex. Therefore there exists at least a pair of points x and y of 5 such
that xy 4 S. We know also by the definition of P, that it is possible to find a
triple {x,y,z} ¢ S, satisfying the following inclusion and non-inclusion rela-
tions: :

xzc S and ¥z ¢ 5.
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There are now two possibilities:
{a) either this relation may hold only for a single fixed point ye .S, or else
() for a variable point y in some subset of S.

If we assume y as a fixed point in S, then for every ze § yz’s will be the only seg-
ments that are not contained in S. Therefore for every finite subset {x,y, z, v}
< &, the segments xz, zv, xv would be contained in §, hence the triangle xvz
< §. This implies under this assumption that the set § has the T, property.

If we assume y as a varying point in S, then for arbitrary point sets such
as £, = {x,y,z} and X, = {x, 1, k} the only segments contained in § would be
xz and xk. Let £ be the union of £, and X, ,

E=XUZ, = {xpz1t,k}

then by the P, property we will have also yt and zk contained in S. That means
that for a certain choice of five points belonging to S™\ Ker.S we can have only
one triangle contained in S. The purpose of a such choice is evident since we can
only get the least number of triangles contained in § by choosing points belong-
ing to §\Ker.S and §,\Ker.S. If we choose four points, two of them belong-
ing to S\ Ker.S and the other two to 5, Ker.S, no such triangle can be found.
The fifth point can either be in the Ker.S or else in one of the sets 5\ Ker.S or
SN\Ker.S. If we take the fifth point in Ker.S then it may occur that more than
one triangle contained in S is obtained. So it is only when out of five points two
of them are chosen in §;\Ker.§ and the remaining three in 8, Ker.S that we
get a single triangle. Because of this brief remark, on returning to the last step of
our proof, we can claim that the set S has the property 7, since 5 is the minimum
number of points for which only one triangle contained in S is always to be
found.

5,2.1. Remark. The converse of the theorem is not true. That is, a set
may have the T property or the 7, property without having the P, property.
Take any set having the property 7. Then any quintuple of points F# =
{a,b,¢,d, e} in § is such that at least one of the closed triangles defined by
three of these points is contained in §. Call g, b, ¢ the vertices of any such triangle
and let d, e denote the remainin.g points of the quintuple % . The assumption

ad, ae, de S
does not contradict the fact that 5 has the property T , yet
ad, ae & S
does not imply
de — §.

Hence the property P, does not necessarily hold.
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An example evidencing such a situation is supplied by a set § consisting
of the union of the singletons formed by the two isolated points i, and i, with
any convex set C. .

5.3. Theorem. Any closed, connected I-convex set ScZ has the P
property. i
Proof. Since S has the 7, property, for any quintuple & = {x, ,x,,x,,
x,,x}in S, at least one closed triangle having as vertices three of these points
has to be contained in S. Let the three vertices of such a triangle be x, N S
If we can show that whenever

() WX, Xy Xy, Xy X5, XX, XyX;, XX S
implies

X, x, a8
then the proof will be corgpléte.

Since S is closed, there is a polygonal arc P in S, joining any two points of
S having minimal length. Let & denote the number of sides of P and let

y() »y; =“':yk
be the consecutive vertices of P,
a) We claim that & = 2.
Assume &k > 2 and take
Xy == Yo s Py sees Vi = X4
Consider the set of five points
G = X5 Vo s Vo s Vi s X} -

Vo Y2 s ¥ Vi and p, y, can not belong to S, because had -this been the case it
would be possible to shorten the polygonal arc P, eliminating y, in the first case,
Py 3ees Py in the second case and p, , ¥,, ¥y ..., ¥, in the last case: in all three
cases this would contradict the hypothesis of minimal length of £. Under these
conditions the quintuple 7, fails to determine any triangle contained in S, against
the hypothesis that § has the 7 property. This last contradiction shows that
the assumption &k > 2 is not true, Hence & = 2, as claimed.

b) We now claim that if (a) holds x,x, = S.

Consider again the quintuple & = {x, x,, x, , x, , X, } under the hypothesis
that x, x, x; < § and that

(o) Ny Xy, XgXy, XgXg, XX, X3X,, XX 4S8

we claim that x, x, < 5.
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Suppose x,x, ¢ S. Because of (o) neither x, nor x, is cantained in x; ¥, x, .
Then, as x,, x, € S and S is connected, there exists a polygonal arc P joining
x, and x, having minimal length and by (a) exactly two sides. Let y, denote the
point of intersection of the two sides of this polygonal arc. Then x, y, , y, x, 5.

Let y,€ x,», ¥4 €y, %, ; then y,,y, € S. Consider the subset
F ={x,%,,¥,,%,¥) S

Because of the T, property this subset must determine at least one triangle com-
pletely contained in S. Since x, x, , x, x, ¢ S the only possible triangles are

X YoV X Vo Vg Xg Vo Yy

However if x,y,y, < S then y,x, < S and the polygonal arc with vertices x,, y,,
x, (which is shorter then P) would join x, to x, against the minimality condition;
therefore x, ¥, ¥, & S .

A similar process shows that x,y,x, ¢ S, therefore &, determines exactly
one triangle belonging to S,

* X Y, S

Since y, and y, are chosen arbitrarily on the segments x, y, and y, x, it is possible
to define two nets of points

Yoo = athien ; Y= {y4-f}:ieE
and two directed sets D, E such thatforall ie Dand all je E, y,;, y,,;€.5 and

Um y,, =x, , limy,;=x,.
ieD JeE

Furthermore, by (*),

Bro +(0 =B ¥y € Yo Vs &5 0B <L
Since S is closed

CImBa H (=P = b U =P e 5.

ie

JeE
Hence

X, X, S

as claimed.

5.3.1. Corollary. On a closed, connected set S < & properties P, and

T. imply each other.

5

Proof, Since S has the P, property then it is the union of two convex sets
S, and §,. Let x;,x, €S such that x, x, ¢ S, where S=.S, U S, and
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S;NS, # ¢ If x5 then x, ¢ 5| since S, is convex and trivially x, , x, ¢ Ker.S,
therefore x, € S;\ Ker.S and x, € S, Ker. 5. Furthermore x, and x, are
not the only pairs which satisfy the above conditions since S| and S, are the
connected convex sets, Let x,, x, € S be another pair such that x, x, ¢ S,
where x; € S\ Ker.§, x, € 5, Ker.S. Then for any quintuple of points in .§
such as
Pr={x, %y, %, X, X}

P, implies x, x, x, < S.

By Theorem 5.3 it can be directly concluded that the 7, property implies
the P, property. Hence

T, < P,.

5,3.2. Corollary. Any closed, connected (5,1)-triangular convex set S is
an L, set.

Proof. See a) in the proof of Theorem 5.3.

5.4, Theorem. Any closed, connected T, convex set § < 2 is (3,1)-con-
vex.

Proof. By using Theorem 5.3 we can conclude that S has the P, property.
However P, property is a generalization of P, property. Hence S is (3,1)-convex.

5.4.1. Remark. If a set is not P, it can not be P, . To prove this statement
it is sufficient to assume that some point triple, say B" = {x,y,z} < S exists,
such that

vz, zx, xy ¢ S,
so that § is not P, .
Let p* = {&, v} < S. Then the quintuple
p=p UPp ={x,pyzuvicS
is such that no ordering of these five points satisfies the requirements of the P,
property.

5.4.2. Remark. According to Theorem 4 of Kay and Guay['], any closed,
connected m-convex set Sc Z isan L, | set, so Theorem 5.4 confirms
Corollary 5.3.1 of Theorem 5.3. However the converse of the Theorem 5.4 is
not true. For a star-shaped pentagon is (3,[)-convex, yet it is not (5, [)-triangu-
lar convex.

55. Lemma. If Sis (m.1)-triangular convex then Sis (m—I,I)-convex.

Proof. For any m-ple in S at least one triangle, consequently at least three
segments determined by these points are contained in S since S has the T, property.

I
1
1
=
i
&
i
i
L
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By eliminating any one point from the m-ple, depending as to whether this
point is one of the vertices of the triangle or not at most two of the sides of the tri-
angle contained in .5 are erased while the third side remains in S. Hence the set
S is (m — 1,1)-convex.

5.5.1. Remark. The following example shows that the preceding result
is best possible.

Consider the set .S as the union of two closed triangles xyz and ztp, each
deprived of the sides (xy), (x2) and (¢p), (zp) respectively.

5.6, Theorem. Any m-triangular convex set is the union of m—2 or fewer
starshaped sets.

Proof. If 5 is m-triangular convex, S is (m — |,1)-convex by Lemma 5.5.
Hence by Theorem 2 of Kay and Guay ['], S is the union of m — 2 or fewer star-
shaped sets. '

57, Theorem. If § — Z is a closed, connected 4-triangular convex set
then § has no inc points®.

Proof. Assume that S has at least one Inc point g in S. Since g is an Inc
point of 5 there exist nets x; and y; in § over the directed sets, D and E such that

limx;, =limy;,=gq,
€D JjEeE

where xy; & S for all ie D, je E. Then for all the sets
San = {xi» Xy s ¥is Yieh s
where ie D, je E,
X Vi Xpgg Yigr & S

Therefore the quadruples S, define no closed triangles contained in S, contra-
dicting the hypothesis. Consequently the set .S can not contain any Inc points.

57.1. Corollary. If § < % is a closed, connected 4-triangular convex
set then S is convex.

Proof. Theorem 5.7 implies that § has no Inc points. The fact that § is
a convex set then follows immediately from Tietze’s theorem [f].

"5.8. Definition.  Whenever the open segment joining two points x and y
is contained in .S, it will be said that “x sees y via S”. A set T is “visually independ-
ent via S” if no two distinct members of T see each other via S.

9 A point of local non convexity {or Inc point) x of S is according to Kay and Guay ['],
a point such that each neighbourhood ¥ of x contains y, z € § such that yz { §. Such points
are called points of strong Inc by Valentine [°], as pointed out by the above authors.
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5.9. Theorem. A closed m-triangular convex set § %, which contains
k Inc points which are visually independent via S, is the union of m — 2k — 1
or fewer starshaped sets.

Proof. Let gq,,..., g, denote the k lnc points of S. Since S is closed, for
each ¢, ({ = 1,..., k) there exist nets x,,, i, over the directed sets E; , D, satis-

fying the condifions

{(5.9.1) . lim x; = lim Y=
1eE; jeby; .
and
- (5.9.2) Xy ¥y & S

for every je D,, Ic E,;.
Thus a set of 2k points

8o = 1%y, s Yips e Xy ’J’k]}

which is visually independent via S, is attained. Call “consecutive point” of X
the point i, Or of y;; the point Viris and consider together with S, the set S+

of all consecutive points of those in .S, The set S; U S,* == §, has 4k points which
are no more visually independent via 5. By (5.9.2) S| can at most define 2k seg-
ments contained in S, such that they span no triangle in S. Furthermore, since
S is m-triangular convex there exists a set of m — 1 points such that no point
triple chosen amongst them defines a triangle contained in S. Hence

m— 1 = 4k.
Let
h=m—1— 4k

Then s =< # will denote the number of points of § that will complete S, to the
maximal visually independent set of & that is

= max\ Sn
for

S, =1{P,..., P} where  S*¥ C §,.

In order to obtéin the greatest number of starshaped sets the set S, of visually
independent points of § of maximal cardinality has to be determined. This set
corresponds to the case s = /s because when s = 4 S* = S, and therefore

Sax = S5 U5,

and card.S,., = 2k + 4. 1f, on the other hand some points of S, see onlj‘/ one
other point of S, via 8, Smax = S, U S, and card.Sp.. = 2k + 5, 5 being the
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card. §;. So, as previously stated the maximal cardinality is reached for s = 4
which means that S, consists of all isolated points. Under this assumption the
set is (2k + A + 1)-convex and by Theorem 2 of Kay and Guay it is the union
of 2k + h or fewer starshaped sets.

5.9.1. Corollary. A closed m-triangular} convex set § < £, which con-
tains & Inc points such that they are visually independent via S is a (s,])-convex

set for 312i1 < s < m— 2k,

Proof. By Theorem 5.9 S.. is the greatest possible maximal visually
independent set that can be obtained, so in this case S is (2k + A + 1)-convex.
If, on the other hand, # = 0 then Sn.. =5, and consequently 5 is (2k | L,1)-
convex. In each of these cases it is sufficient to substitute m — | — 4k in place
of It to get the upper and the lower bounds for ¢ as given in the statement of the
corollary.

510. Lemma. I S < Z is a closed, connected, m-triangular convex set,
the integer m is odd.

Proof. The set S is connected and therefore S has no isolated points, so
S does not have points that see only themselves via S.

Let § denote a subset of S such that every point of §” sees exactly one single
other point of §”"via S, Call & = {§'} the class of such sets §”..% can be partially
ordered by inclusion and therefore, by Zorn’s Lemma, there exists a maximal
set 5 max €F . S'max €an be described as follows:

S’ max = {P;, Q€ S| P;sees only Q; and Q; sees only P; via S;

Je {1, h}.

Consequently
Card. ' pax = 241

and S .. 1§ the union of two visually independent sets,

S = {Py e, Py} and S = {0 . O}
We claim that
2h=m—1.

a) If 2h > m—1 then 2/i = m and the points of 5", , because of m-trian-
gular convexity would have to define a triangle contained in S, in contradiction
with the hypothesis that every point of S5, seces exactly one other point of
S5 via S,

b) If 2h<<m~1 let k =m—1 — 2k and suppose the P,’s are numbered
s0 that .

e 2

£
;
£
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T={P,,.., P}

is the set consisting of all such points. Then no element of T sees any other element
of theset S'via S because otherwise maximality would be contradicted. This implies
that all the points of T are isolated and this contradicts connectedness. Hence

2h<m—1
is impossible.

5.11. Theorem. For m >3 a closed, connected, m-triangular convex set
m—1

S having a single Inc point ¢ is the starshaped union of convex sets.

Proof. 1) 5 is a starshaped set with respect to g. To prove this consider
the following:

a) By Theorem 5.10 under the present hypothesis m is odd , so let
m=2p + 1.

b) § has a single Inc point ¢ and has the T,, property. Therefore if §" is a
subset of S such that every point of 5 sees exactly one single other point of §°
via § and if & = {S"}, any maximal set S, of % has cardinality m — 1 = 2p.

¢) As shown above it is always possible to choose a set S’y so that it is
the union of two visnally independent sets

S = {x .. %,} , S, = {V1 s Va)
such that
(5.11.1) G, Vg, 5y S

for every i € {l,...,p} and x; y; ¢ § for i # j. Then, because S is m-triangular
convex for any x € SN\ {g} the set § = 8", U {x} has cardinality m and
must define at least one triangle contained in S. Because of the choice of S,
and S,

XX, Vi¥y o, Xy S
for any (i,/) € {1,...,p} x {1,...,.p} so this triangle has to be x, y; x, This implies
that there is always at least one index i such that

Xy xS

Furthermore this index is unique: if indeed another triangle, say x; y; x < S then

XX, xx; < S,

Since § has no Inc points except g, x.is not a Inc point and by Corrollary 2 in
Valentine [?],
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xXpx; S

thus contradicting the assumption of visual independence in S, . Thus

xyxc S
for a single value of 7 and
xx < S
d) By (5.11.1)
) xig < S

so, since x; # ¢ is not a Inc point, again by Corollary 2 of Valentine
xg < S
This proves that S is a starshaped set with respect to 4.

2) S5 is the union of p convex sets. To prove this call 7, the triangle x,y, ¢
P -
for every i € {I,...,p}. We claim that § = U K; where all the X, are convex

i=1

sets such that T, < X for all values of the index 7.

Call /; (i =1,...,p) the rays issuing from ¢ seperating two consecutive
points of S; such that [, » § = {q} . Call A, the angular domain of vertex g,
defined by /;, [, containing the point x; (/,,; = /).

Call
K=AnNnS;
then x; € K;.
K, is convex. In fact, for any x, y € K, since § is starshaped
gx, gy < S, A,
hence
xp C S, A,
by Corollary 2 of Vélentine applied to S and ordinary convexity to A;,. Thus
xy < K,
as was to be proved.

5.11.1. Remark. The second part of the proof requires S to be a set in
the Euclidean plane but clearly a generalization by means of polytops to E” for
any finite » can be obtained.

5.11.2. Corollary. The set § of Theorem 5.11 is an L, set.
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Proof. Since S is starshaped with respect to g, every point x € 5 sees ¢
via S. Then for any x, y € S the two sided polygonal arc xgy joins these two
points, so S is L, .

5.312. Theorem. If § ¢ & is a closed, connected, m-triangular convex

set then .5 is (m—;_—l, )-convex.

Proof. Since S has the T, property and .S is connected, there exists a max-
imal set

8 = {X s Xy b

in which each element sees only one other element of §” via .§. By Theorem 5.10
m — 1 is even, furthermore § has no isolated points and therefore S” can be ex-
pressed as the union of two visually independent sets with the same cardinality.

" —

In this case the cardinality of each set is equal to ! . This proves the ex-

istence of a maximal visually independent set contained in S, with cardinality

mT-—l . Hence S is i

|
-COTvex.

5.13. Theorem. A closed, connected, m-triangular convex set S — £

is an L, _, set.
2

Proof. If Sis a m-triangular convex set, .S is m 1 -convex by Theorem

5.12. Hence by Theorem 4 of Kay and Guay ['], S is an Ly set.
2

5.14. Theorem. In a finite dimensional linear space every connected
m-triangular convex set is polygonally connected.

Proof, I 5 is a m-triangular convex set contained in a finite dimensional
linear space, by Lemma 5.5 it is a (m—1,1)-convex set in this finite dimensional
space, so that by Theorem 6 of Kay and Guay it is polygonally connected.

5.14.1. Corollary. In a finite dimensional linear space every connected
m-triangular convex set is an L,, ..

Proof. Under the hypothesis of the Corollary, again by Lemma 5.5 5 is
a (m — 1,1)-convex set in a finite dimensional linear space and therefore by
Corollary 2 of Kay and Guay, Sisan L,, ..
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CHAPTER THREE
POSSIBILITIES OF FURTHER GENERALIZATIONS

The notion of triangular convexity introduced in the previous Chapters
may be extended in a fairly obvious manner.

As a first step, consider fetrahedral comvexity, assuming that the ambient
linear space & has dimension > 3.

Then in any such linear space &, a set S will be said to have the 7%, property
{or to be tetrahedrally (mn)-convex) if S contains at least m distinet points (with
m = 4) and if for each subset of m distinct points of § at least n of the (g’) pos-
sible closed tetrahedra determined by these points are contained in S, m being
the lowest and r being the highest integer giving rise to such a property. Obvi-
ously the integers m and » are related by the inequality

l=ns< ().

In particular, if a set S has the g, property with » = 1, it will be said to have
the gz, property.
It can be shown that

& ¢ < convexity

-and it is clear that several of the theorems proved in Chapter Two can be extend-
ed (with, of course, some amendments) to tetrahedral convexity.

More in general, suppose that the linear space 2 has dimension d > r and
in any such linear space consider a set .S, containing at least » |- 1 distinct points.
S will be said to be r-simplicially (i, n)-convex or to have the .S, property if
for each subset of m distinct points (with m = r - 1), at least r of the (:Tx) pos-

sible r-simplici determined by these points are contained in S, m being the low-
est integer and r being the highest integer giving rise to such a property. Again,
the integers m and n will be related by the inequality

15”.‘5(,{21)-

In particular, if a set' .S has the ,S,,” property with # =1, § will be said to have
the _S," property.

rm

Again, it can be shown that

S, 41 <> convexity

and again, most of the results, adjusted as far as integers appearing in the bounds
are concerned, obtained in Chapter Two can be carried on to r-simaplicially (2, n)-
convex sets.
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OZET

Bu caligmada, bugtine kadar tanimlanan zayiflatilmis kouvekslik ge-
sitleri ile bazi yakinliklar1 olan, $zel kogullar altinda da konvekslik tanimi
ile gakigan, {m,n) - Gggensel konvekslik adi verilen yeni bir kavram ithal

edilmekte ve bununla ilgili bazi sonuglar elde edilmektedir,




