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T R I A N G U L A R C O N V E X I T Y 1 } 

by 

S- A K D O G A N 

In this paper a condition modifying the standard convexity conditions in 
mathematical literature up to now and so called "(m,«)-triangular convexity" 

has been introduced and obtained some results about it. 

C H A P T E R O N E 

G E N E R A L I T I E S 

I . The pro l i f ic nature o f the def in i t ion o f ordinary convexity has given 
rise to a considerable amount o f research and this because the condi t ion impos
ing that the l ine segments determined by any two points o f a set belong to the 
set has the possibil i ty o f being weakened i n various ways to reveal several interest
i n g new properties. 

One way o f do ing this is to consider the property ment ioned above to be 
t rue only for the intersection o f the set w i t h the neighborhood o f a po in t belong
i n g to the set which , i n fact, gives rise to local convexity at the po in t . Some o th 
er ways are the consequences o f certain orders and restrictions imposed on the 
points belonging to the set. 

The cases w h i c h have proved to be the most interesting up to now are the 
ones that correspond to one o f the fo l lowing conditions : 

i) F o r each m distinct points o f a set S (m > 2), at least one o f the 

possible segments determined by those points is contained i n S. 

ii) F o r each m distinct points o f a set S (m > 2), at least n o f the (™) pos

sible segments determined by those points for 1 < n < (™) are contained i n S. 

For m — 2 the above condi t ion reduces to the one used to define convexity 
i n the ord inary sense. 

') The author wishes to thank Prof. Dr. Giacomo Saban for his support and valuable 
suggestions he had made during the preparation of her thesis. 
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in) F o r each pair o f points i n S there exists a sequence o f no more than 
m-1 points i n S such that the given two points may be jo ined by a polygonal l ine 
having m or fewer sides, a l l contained i n S. 

iv) F o r each m distinct points o f S, w i t h m odd, taken i n a given order and 
such that the l ine j o i n i n g any t w o consecutive points is no t in S, the in i t ia l and 
f i n a l points o f this m-ple are jo ined by a l ine contained i n S. 

O f the above, case / has been examined by several authors, mainly by Valen
t ine [ 3 ] for m = 3 and i t is named the three point convexity property whereas for 
arbi t rary m points the set is said m-convex: alternatively i t is often said that the 
set has i n this case the property Pm

 2 ) ; case ii has been examined i n detail mainly 
by D a v i d C. K a y and Mer le D . Guay [*] , and called by these authors (m,«)~ 
convexity. I f a set has the property defined by the condi t ion Hi this set is said to 
have the property L m > whereas i f a set verifies the condi t ion mentioned i n the case 
iv i t is said to have the property PQ. Sets having the property L m have been exam
ined i n the papers [*] , [ 2 ] , [ 5 ] and sets having the property Pa i n [ 7 ] and f 8 ] . 

A l l the conditions mentioned above use different combinations o f line seg
ments defined by points belonging to the set and require that these segments 
lie entirely i n the set or at least guarantee this for a certain number o f them. Hence 
new combinations appear to be inevitable foundat ion o f new properties. 

I t is the purpose o f this w o r k to introduce a new condi t ion, reached i n a 
similar manner, and to deduce properties f r o m this condi t ion as well as inter
relations between this property and the ones listed above. 

A l t h o u g h a Hausdor f f linear space L over the reals can be assumed as a 
setting for what follows, i t may be sometimes necessary to restrict the discussion 
to sets S contained i n 2-dhnensional Euclidean space E2. 

Throughout notations used by F . A . Valentine i n [ g ] w i l l be used. Further
more a closed triangle w i t h vertices x, y, z w i l l be denoted by xyz and similarly 
an open triangle w i l l be denoted by (xyz). 

C H A P T E R T W O 

T R I A N G U L A R C O N V E X I T Y 

5. Our main concern w i l l be the study o f the consequences o f the condi

t i o n expressed i n the fo l lowing def in i t ion : 

1.1. Def ini t ion. I n any linear space 2£ , a set S w i l l be said to have the 

T"„ property (or to be (m, n)-triangular convex) i f i t contains at least m points 

2 ) By extension, sets that are (;», «)-convex will be said to have the property Pn

n 
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such that m > 3 and i f for each m distinct points o f S at least n o f the ('3"} possible 

closed triangles determined by those points are contained i n S, m being the 

lowest and n being the highest integer g iv ing rise to such a property. 

Obviously this cond i t ion has a meaning for values o f the integers m and n 
related by the inequal i ty 

m(m — l ) ( m — 2) 
(1.1.1) l < n * 6 

Furthermore i t is necessary to assume that 

d i m / J f iST > 2. 

1.2. Remarks : 

0 I f a set Sis (m, l ) - t r iangular convex (or equivalently, has the property) 
i t w i l l be said to be m-triangular convex or to have the Tm property. 

ii) Every convex set K in 2£ has the T3 property. 

Hi) Conversely, if a set S in 2£ has the property T3 , S must be convex. 

2. I t is possible to exhibit examples o f sets that are (m,H)-convex wi thou t 

having the Ts

r proper ty for some pairs o f integers (r, s) satisfying a condi t ion o f 

the f o r m 3 < r < m, s < n. 

2 .1 . Consider a set S wh ich is the u n i o n o f a convex set K and p isolated 

points ki ,...,kp 

S = Ku{kx ,...,kp] . 

This set is obviously (p + 2,l)-convex, where m = p -f- 2, n = I . However S 

lacks any T'l proper ty for 3 < /• < p + 2 since S is (p - f 3)-triangular convex. 

2.2. A similar s i tuat ion can arise w i t h connected sets as can be seen i n the 
fo l l owing example: Let A = (abc) denote an open triangle and call S the set 
obtained as the un ion o f A w i t h its three vertices 

S = A u {a, b, c} . 

T h e n S is neither T4 nor T 3 t hough i t is (4,3)-convex and (5,3)-triangular con

vex. 

2.3. A n open po lygon to wh ich are added some o f its vertices chosen i n a 

convenient order can supply a suitable example o f a set having the T"n proper ty 
f o r any pair o f integers m, n satisfying (1.1.1). I n part icular the ut i l iza t ion o f reg
ular polygons i n such examples causes no loss o f generality. 

For instance the set S obtained as the un ion o f an open hexagon and the 
set formed by the o d d (or even) numbered vertices has the T 3 property and i n or
der to obta in an example o f a set having the proper ty Ts (s > 3) i t is sufficient 
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to add to the set considered above s-3 isolated points. Similar ly , an open hepta
gon together w i t h four o f its vertices (chosen so that three non consecutive ver t i 
ces are omit ted) yields an example o f a set that is T4

2. I n order to ob ta in a set ha
v ing the proper ty Ts

2 (s > 4), again i t is sufficient to add s-4 isolated points t o 
the above set. 

3. I n order to make a comparison between (m,rc)-triangular convexity 
and (/>, #)-convexity i t is convenient to re turn to example 2.2. S is an example 
o f a set that has the P4

3 property wi thou t having any one o f the properties P2, 
P3 ,P4

 3 ) . A l t h o u g h for every choice o f 4 points i n S at least 3 segments, deter^-
mined by pairs chosen amongst these 4 points are contained i n S, i t is obvious that 
any quatuor o f points, taken i n S does not define even one closed triangle con
tained i n S. This example is sufficient to show that the property T," is a stronger 
condi t ion (m, i ) -convexi ty . 

3 .1 . Proposition. The connected un ion o f m closed convex sets wh ich is 
(m + l , l ) -convex is not ( , i , l )- tr iangular convex for any s satisfying the ine
quali ty 3 < s < 2m 1. 

Before g iv ing a p r o o f o f the above statement i t is helpful to go over an exam
ple to show tha t the condi t ion o f («2 + 1,1) convexity, imposed on the un ion o f 
the m closed convex sets, is necessary. 

The closed star-like pentagon which can be expressed as the u n i o n o f no 
less than 3 closed convex sets has the P3 property but i t has neither T5, T4 nor 
T 3 property since i t is (6 , l ) - t r iangular convex whereas the set w h i c h consists o f 
the u n i o n o f t w o closed convex sets is (5 , l ) - t r iangular convex and accordingly 
wh ich has no t TA , T3 proper ty s t i l l has the P3 property. I n the f i r s t example the 
set is connected un ion o f 3 closed convex sets and i t does not f u l f i l the requirement 
o f (4, l ) -convexity hence the assertion o f the proposi t ion does no t ho ld . H o w 
ever i n the second example since the required condi t ion is satisfied, that is, since 
the un ion S has the P3 property for m = 2, the set has also, as claimed, the Tn

s 

property for s = 2m ~|~ 1. 

T o prove the statement, let S be the connected un ion o f m closed, connected, 
111 

convexsets Kf ( / — ! , . . . , « ) which is ( m + l , l ) - c o n v e x . I n this case since . S = |J Kt-

is connected, none o f the components o f S can be isolated points. Therefore i t 
is always possible, because o f the convexity o f the sets K;, to f i n d t w o distinct 

a ) I t is sometimes argued that any set that has the Pn

m property has the Pm property; 
however in this paper the definition wiil be accepted to mean that n is the integer that denotes 
the greatest number of closed segments that any m-ple of points chosen in S can define, where 
Hi is the least integer giving rise to such a property. 
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sets o f m points belonging to S, such that none o f the segments determined by any 
t w o points o f one such set is contained i n S, Let any two such subsets o f S con
ta in ing exactly m points be 

x2 = iii >4 2 , . . . > ? „ , } > 

where p{ , e Ki and p-,p} ct S, q\ q-f S for 1 < i ,j < m. Thus i t is possible 
to get m segments contained i n S w i thou t fo rming a triangle contained i n S by 
means o f the points belonging to the sets and £ 2 . T o verify this assertion 
call S0 the subset o f S defined as fol lows: 

So = S l U 2 2 = {Pi .<7i > - . / > m » ? * } • 

Since AT/ is convex for each 1, . . . , m, every pair (/?,-, qs) o f 5 0 determines a 
segment p{ q{ cz K{ . Hence pf qi is contained i n S. However for pairs such as 
(Pi>°j) n o s u c n t h ing can be asserted. F o r any t r iple {p; >Pj > qk} or {pj,qj>qk} 
(where /' # j ^ k) the segments or qsqk w i l l not be contained i n S and t r iv 
ially no segments w i l l be contained i n S for {p. ,pj ,pk) or {q., q} , qk] k 
= I , . . . , m ) , because o f the hypothesis. Therefore no triangle contained in S can 
be obtained when using as vertices 3 o f the 2m points o f SQ. So SQ which is formed 
by 2m points o f S gives rise to at least m segments all contained i n S, but to no 
triangle. I f we add any s e S to iS0 and denote this new subset o f S as 

we w i l l obtain two or more segments in addi t ion to the m segments all contained 
i n S, depending whether s e AT,- \ Ker.,S or s e K e r . S. I n the first case, that is 
i f 5 e Ki\Ker.S, s, pt, q-, e AT,- w i l l f o r m sp{ qt <zz K( cz S due to the convexity 
o f Kt . i n the second case a greater number o f triangles w i l l be obtained but this 
is really irrelevant since we are interested i n comput ing the least number o f t r i an
gles contained i n S by using 2m + 1 points o f S. Thus S has the T 2 m + l property. 

4. The previous remarks enable us to conclude that though there exist 
sets that are (m, « ) -convex wi thout being (r, j ) - t r iangular convex, the converse 
is never true: if a set is (m, n)-triangidar convex then it is (1; s)-convex. However 
a determination o f some l i m i t a t i o n for the integers r and s appears to be quite 
di f f icul t . Only for sets which are (m, l ) - t r iangular convex the fo l lowing inequal
ities h o l d : 

3 < /' < m , 1 -<. s < 3 . 

For example a closed set formed by two closed triangles having a vertex in com
m o n is (5 , l ) - t r iangular convex and (3,l)-convex. Nevertheless a closed triangle 
and two isolated points also f o r m a set which is (5 , l ) - t r iangular convex bu t 
(4,l)-convex. 
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W h e n r is taken equal to m, s w i l l have as lower bound 3, but as its upper 
bound i t w i l l have some value M, such that 

M > 3n. 

I t is possible to express M in terms o f m. The fo l lowing proposi t ion introduces 
M i n terms o f m. 

4 . 1 . Proposit ion. A set S c ^ having the property Tm (m > 3) is also 
(m,i')-convex, where 

ffl-3]2 

2 

([/•] denotes the greatest integer < r). 

Proof. Consider a set S having the property Tm ; then any subset formed 
by m points chosen at r andom i n S defines one closed triangle contained i n S. 
The problem is to establish the highest possible number o f closed segments con
tained i n S w i thou t fo rming any other triangles. 

F o r this purpose assume that the vertices o f the single existing triangle are 
the points 

(a) xi , x2 , x3 

and the remaining points o f the m-ple are 

(b) x A , x ^ . . . , x m . 

Let o:, denote the set formed by the points i n (a) , <J2 that formed by the points 
shown i n (b) and let 

I = CTj u o"2 . 

Fur thermore let a2i denote the set having cardinali ty n(- o f points o f a 2 that are 
jo ined to the vertex x ; . Thus 

®2 ~ a2l U ^22 ^ a 23 

and 

card. <J2 = ni + n2 + n3 = m — 3. 

A t this stage the question is to investigate al l possible combinations amongst 
m points and, e l iminat ing certain cases after making comparisons between them, 
to reach the opt imal combina t ion that can occur. 

i) Suppose n is the m a x i m u m number o f segments that can be d rawn amongst 
m — 3 points o f u2 w i thou t these segments fo rming a triangle: then the set £ 
may define n - f 3 segments contained i n S bu t this number can be increased by 
j o i n i n g a po in t o f a2 to a p o i n t o f a : because any such segment w i l l not give 

m 
1 + ( - 1 ) " 
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rise to a conf igura t ion containing a second triangle. Hence i t w o u l d be false to 

assume that the m a x i m u m number o f segments contained i n S is reached by a 

conf igurat ion i n wh ich points o f o 2 are not jo ined to points o f a 1 . This implies 

that the conf igura t ion having the greatest number o f closed segments is reached 

when al l the points o f u 2 are jo ined to some poin t o f G1 . 

Observe that f r o m any po in t o f c 2 one can draw at most one segment to a 
3 

poin t o f a 2 : indeed i f xt- e cr2 — j j a 2 j , only one o f the segments 

Xj X^ , Xj X2 , Xj 

belongs to S, otherwise, as x2 x3 , x3 x{ and x2 xi are contained i n S by our 
in i t i a l assumption, i f more than one o f the segments x,. x} (J = 1, 2, 3) f r o m x(-
were drawn, a second closed triangle contained i n S w o u l d be formed. Therefore 
i t is clear that the segments such as xxj for j # /' where x e a2i and Xj e o1 , 
i j e { 1 , 2 , 3 } w o u l d no t be counted when the m a x i m u m number o f segments 
contained i n S are considered. The only segments that satisfy the restrictions 
mentioned above and hence suitable to our purpose are the ones that can be 
drawn between the points o f any two o f o2j , / e { 1 , 2, 3} ; otherwise (that is i f 
we take three points each element o f one o f the o 2 / , / e { 1 , 2, 3 } ) a second 
triangle, different f rom xi x2 x3 wou ld be formed against the in i t i a l assumption. 
Under these circumstances i n order to obtain the op t ima l combina t ion i t is 
sufficient to choose the set <J2I w i t h the greatest cardinali ty amongst c 2 ( , CT22 , a 2 3 

and m u l t i p l y its cardinal i ty w i t h the cardinali ty o f the remaining two sets o f CT2 

respectively and add to their sum the cardinali ty o f £ . 

Suppose 

card. G21 = nl < card. a , 2 = n2 < card. G 2 3 = « 3 

then 

(*) s(n1 , n2 , /? 3 ) = « 3 n2 H- n3 nx + m 

w i l l denote the possible m a x i m u m number o f line segments. 

ii) The second stage o f our p r o o f is to observe the various kinds o f possi

ble distr ibutions o f the m—3 points according to the segments j o i n i n g them t o 

one o f the three vertices. This d is t r ibut ion can be as follows : 

a) Every po in t belonging to cr2 can be jo ined to a single vertex. 

b) The m — 3 points belonging to a 2 can be distributed between any two 

o f the three vertices. 

c) The d is t r ibut ion o f these points may occur between al l three vertices. 

Hi) Assume al l the points o f cr2 are jo ined to the same vertex o f al . Then 
no other segment can be added to the configurat ion w i thou t fo rming a further 
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closed triangle contained i n S, because this segment w o u l d be j o i n i n g two points 
o f a 2 , already j o ined to one o f the points o f al . Thus the assumption that a l l 
the points o f a2 are jo ined to the same vertex o f a 1 yields as m a x i m u m number 
o f segments the value m since by (*) 

s(o, o, m — 3) = card. £ . 

This value is no t the m a x i m u m one attainable (unless m = 4, because i f m = 4 
there is no other possibil i ty), as can be shown by considering the case i n which 
one po in t o f CT2 is jo ined , say to x2 and al l the remaining m — 4 points to xl . 
Obviously the m a x i m u m number o f segments that can be d rawn i n this case is 
obtained when x 4 (the po in t j o ined to x2) is also jo ined to the m — 4 points o f 
c 2 so that the configurat ion has 2m — 4 segments. Clearly for m > 5 

2m — 4 > m 

so that the m a x i m u m is no t reached when al l the points o f o"2 are jo ined to the 
same vertex, chosen i n a1 . 

iv) Under these circumstances i t is necessary to investigate the case where 
the points o f o , are jo ined to the two vertices o f the triangle 

An "equal distribution" or "almost equal distribution" of the m — 3 points 
between any two vertices gives a higher value than an arbitrary distribution. 

a) Assume m — 3 ~ 2k. Then by "equal d i s t r i bu t ion" we shall understand 
that k points are to be jo ined to each o f the t w o vertices. I n this case, again f r o m (*) 

s(o, k, k) = k1 + m. 

I f , i n fact, k -\- r points were jo ined to one vertex and k ~ r points were jo ined 
t o any one o f the other two vertices, then the m a x i m u m number o f lines jo ined 
that cou ld be d rawn for this arbi t rary d i s t r ibu t ion w o u l d be 

s(o, k — r, k + r ) = m + k2 — r2 

and 

s(o, k — r, k + r) < s(o, k, k) . 

P) Assume m — 3 = 2/c + 1. Then for an "a lmost equal d i s t r ibu t ion" 
(whereby we understand that / c + l poin ts are jo ined to one o f the three vertices 
and k points are j o i n e d to another one o f the remaining two) , we have 

s(o, k + 1, k) = k2 + k + m . 

Suppose again an arbi trary d is t r ibut ion i n wh ich k + r + 1 points are 
j o ined to one vertex and k—r points to the other. The m a x i m u m number o f lines 
that cou ld be d rawn w o u l d be 

s (o, k + ;• + 1, k - r) = k2 + k - rz + m 

and again 
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s(o, k + r + 1, k — r) < s(o, k + 1). 

O n the other hand i f we are to consider an arbi trary dis t r ibut ion i n which k + r 
points are jo ined t o one vertex and k + 1 — r points are jo ined to any one o f 
the remaining t w o 

s(o, k + /•, k + 1 — r ) = k2 + k + m + r - r 2 

< /c + 1) . 

I t fol lows that no matter whether m ~ 3 is odd or even, the m a x i m u m number 
o f segments is obtained by means o f an "equa l" or "almost equal d i s t r ibu t ion" . 

The results obtained i n (a) and (ß) can be expressed by means o f a single 
fo rmula by w r i t i n g 

s(2) 

max 
m 

m m — 3 

v) An equal distribution of the m — 3 points of £ between the three vertices 
leads to a number of line segments that is smaller than the one obtained in the case 
of an equal or almost equal distribution between only two vertices. 

Assume m — 3 ~ 3p and let J ( 3 ) denote the number o f segments reached 

i n this case. Then 

j < 3 ) = m + p2 -¡- p2 = m - j - 2p2. 

Since 

p = 
m — 3 

then 

j<2) 
max 

m 
l + ( - l ) " 

s(2) >. m _|_ m — 3' 

m — 3 m 

m + -—• (m — 3f 

max 

> « H (ni — 3 ) 2 

9 

max 

5<3> 
max 

I f the d is t r ibut ion between the three vertices is no t equal then there are two alter
natives. Tha t is either 

o r 

n i — n2 # «3 

»1 # «2 ^ n 3 > 
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where B , (i = 1, 2, 3) indicates the cardinali ty o f each subset o f S such that the 

elements o f these subsets are jo ined to x , . Assume that n{ = n2 i= B 3 then either 

M l = n2 > B 3 

or 

B , = B 2 < « 3 , 

where 

card. cr2 — nl + B 2 - j - n 3 . 

Assume ni — n2 > B 3 . 

(i) F i rs t c l a im is s(n*, B * , (m — 3) —'2B*) > j ( n 3 , n2, B 3 ) , where 

n* = max {B (- | 2 « f + = m — 3, 1,7 e ( 1 , 2, 3) , i 7^ 7 } . 

In order to prove the f i rs t c la im i t is sufficient to show 

s(n1 , B , , B 3 ) < s(ni H- 1, rat + 1, « 3 — 2) 

for « 1 ~ B 2 > B 3 . 

, B , , B , ) — 777 + rt,2 + B x B 3 

j ( « t + 1 , B , + I , / i 3 - 2 ) = m + (« , - f I ) 2 + (« , + l ) ( « 3 - 2 ) 
and 

m -|- B , 2 + w, « 3 < m + B j 2 -f- B 1 n3 — 1 + « 3 • 

Equal i ty holds for B 3 = 1 and B 3 = 0 is excluded since this particular case cor
responds to a d is t r ibut ion between t w o vertices. 

(w) Second cla im is s(n*, B * , (m — 3) —2 B * ) > Î ( B 3 , B , , ni ) for Bj 

II, < B 3 . 

(a) I f m — 3 = 2/j then 

Î ( B * , H * } (m — 3) — 2 B * ) = s(p,p, o) = m + p2 

and 
s(n3 , B , , / / ] ) = in + 2 B 3 . 

Since 
2nl - f " 3 = 2/J and 2/z* = 2/J 

2BJ + B 3 

B * = — = p . 

2 

T o prove the claim it İs sufficient to show 

(2B + n ) 2 

m + p2 > m -j i — :> m - j - 2B 3 B J 
4 

or 

4 B j 2 + 4 Bj B 3 + B 3

2 > 8 B 3 B 1 . 

Since ( 2 B 1 — n3)2 > 0 the above inequali ty always holds. 



TRIANGULAR CONVEXITY 11 

(b) Tf m - 3 - 2p + 1 then 

s(n*,n*, (m — 3) — In*) = s(p>p, 1) = m + p2 + /? 

a n d for = n 2 < « 3 

J ( / I 3 , «j , «j) = m + 2 « 3 n l . 

W e can prove the c la im using the same argument as before : 

2 « , + « 3 = 2/7 + 1 

implies 

s(n3 , B , , «! ) = w + 2pn3 + B 3 — « 3

2 

and this reduces the question to show the va l id i ty o f the fo l lowing inequality 

m -\-p2 + / 7 > 7 n + 2 pn3 + «3 — n3

z ; 

since (p — n3)2 > «3 — p is always true, the c la im is proved. 

W e can n o w conclude by the previous claims (/) and (ii) that when «, — 
n2 ^ « 3 the m a x i m u m number o f segments can be obtained for the dis t r ibut ion 
o f m — 3 points between the three vertices, when nl = nz represents the greatest 
possible equal d is t r ibut ion out o f m — 3 points , for the two vertices. 

The last step o f the p r o o f is the comparison o f s(n*, «*, (m — 3) — In*) 
w i t h s(nx ,n2 ,n3) for H 1 # n 2 ^ w3 . Before that a remark has to be made con
cerning s(n*, n* , (m— 3) —2/i*) : 

s(n*, «*, (m - 3 ) - 2 « * ) = s<2> . 
mo.v 

T o verify this assertion, i t suffices to consider that (m — 3) — 2n* is e^ual to 0 

o r 1 because o f the def in i t ion o f n*, wh ich i n fact amounts t o the two cases i n 

vestigated i n (a) and (¡3). 

T o complete the p r o o f let nx # n2 # n3 and n , < n2 < « 3 , then 

, «2 , «3 ) = m + 773 H 2 + H 3 77j = i ( 3 ) . 

F o r m — 3 o d d 

•?(«*, n*, 1) = m + n*2 + «* 

a n d for m — 3 even 

n*, 0) = m + n * 2 . 

N o w to compare s 0 ) w i t h «*, 0) consider that 

max 

" j + n2 + 773 = 2n* . 

T h e n 

« 3 (T72 + nx ) = n 3 (2«* — rt3) = 2n*n3 — n 3

2 < « * 2 , 
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since 
(n* - n 3 ) 2 > 0 . 

This gives 
jO) = m _j_ ^ _|_ H j ) < m _j_ ff2 = j(2) _ 

The same argument can be used for m — 3 odd. Therefore no matter whether 
m — 3 is even or odd 

max max 

This completes the proof . 

4.1.1. Remark. The l i m i t values i n the statement o f the propos i t ion can 
be effectively reached, as is shown by the fo l lowing examples : 

(a) Le t (abc) be an open triangle and p0 be any po in t o f (abc). Consider 
the set 

S = {{abc) u ab u { c } } \ { / 7 0 } . 

This set is T5 as can readily be seen by drawing the lines ap0 and bp0 and t ak ing 
on them t w o points d and e respectively, b o t h ly ing i n (abc) on the segment op
posed to p0 w i t h respect to a and b. Then the set {a, b, c, d, e} , consisting o f f ive 
points o f S, defines on ly one closed triangle edc, contained i n S, and six seg
ments namely ab, ae, ec, bd, dc and ed a l l contained i n S. Therefore the set is 
(5,6)-convex, 6 being exactly the m a x i m u m number o f line segments that can 
be attained according to the first proposi t ion. 

(P) The m i n i m u m number 3 is obtained by considering a set S' such tha t 

5" = (abc) u {/c, , k2} 

where kv , k2 are isolated points . 

A n intermediate value, for example s ~4, is obtained in a set wh ich is the u n 

ion o f two many-pointed convex sets. 

4.1.2. Result. Remark 4.1.1 shows that the inequali ty o f proposi t ion 4.1 
can no t be sharpened. 

4.1.3. Remark. F o r m = 4 

3 < s < 4 . 

I f we furthermore assume that the set S considered i n the above proposi t ion is 
closed and connected, by Theorem I o f K a y and Guay [ ' ] , £ is convex. 

5.1. Theorem. I f S cz 2£ and S is closed, (/n,tt)-tri angular convex set, 
1 (m — 2 ) 3 m — 2 

w i t h n > — . • —- , then either S is convex .or else S is the un~ 
3 2 3 24 

ion o f a closed convex set and o f k isolated points not i n St, where k satisfies 
the condi t ion 
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Proof. I f 5* is convex, there is no th ing to prove. I f S is not convex, then there 
exists at least a pair o f points x and y, such that xy S. I f furthermore S is as
sumed to be connected, i t is possible to f i n d two sequences o f points , 

and t w o directed sets D, E such that for a l l ie D , je E, X; and y} belong to the 
set S and 

l i m Xj = x , l i m yj = y . 
ieD JeE 

Since S is closed, there w o u l d also have to exist i0 e D and j 0 e E such that 
for a l l / > ( 0 and for all j > j Q . 

xt yj $ S. 

Then i t w o u l d be possible to obta in m points, adequately chosen f rom these 
points xt and ys , a l l belonging to S such that the number o f triangles defined 
by this part icular m-ple, contained i n S, is at most 

i f m is even and equal to 2r, 

6) + ( r i ') = 2 6) + 6) 
i f m is odd and equal to 2r + 1. 

I n the f i rs t case, 

_ 2r(r - 1) ( r - 2) _ 2 r ( 2 r - 2 ) ( 2 r - 4 )  
W ~ 6 24 

_ m(m — 2) (m — 4) _ (m—2) (m 2 —4m) 

24 24 

- J _ ( m - 2 > 3 _ m - 2 

3 ' 2 3 6 

and i n the second case 

2 r ( 2 ; - - 2 ) ( 2 r - 4 ) , r(r - 1) 
26) + 0 24 2 

( m - l ) ( m - 3 ) ( m - 5 ) 2y(2r - 2) -

24 8 

(m - 2) (m - 1) (m - 3) 

24 

(m — 2) ( m 2 - 4m + 3) _ 1 (m — 2 ) 3 _ in - 2 

24 3 2 3 24 
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Since 

1 (m - 2 ) 3 m - 2 1 (m - 2 ) 3 m - 2 
n > — . > — . -

3 2 3 2 4 3 2 3 6 

the above results contradict i n each case the hypothesis that S is (m,«) - t r i angu-
lar convex; hence S must be convex. 

I f S is no t connected, by the previous argument, each o f its components 
has to be convex. B u t then the condi t ion given for n implies that only one o f the 
convex components o f S can have i n f i n i t y o f elements and al l the remaining have 
to reduce to singletons. Then let Sx denote the convex component o f S and pl, 
p2,...,pk be the isolated points o f S; as S is (m,« ) - t r i angu la r convex, the integer 
k has to satisfy the condi t ion 

n < ( V ) • 

5.1.1. Remark. I f m — 4 

1 (m - 2 ) 3 _ m - 2 _ J L - _ L 

T ' ¥ 24 ~~ 3 12 ~ 4 

So for n = 1 the assertion o f the theorem is satisfied, hence any closed connect
ed set S having the property T4 is convex or else, i f not connected S is the u n i o n 
o f a convex set St and a single isolated po in t { / c j , that is 

wh ich confirms Remark 4.1.3. Fur thermore, since for m — 5 

JL (ffl - 2 ) 3 m~2 _ 
3 * 8 24 

Theorem 5.1 can no t be applied to a closed set having the property T5. Indeed 
the u n i o n o f t w o closed convex sets (e.g. t w o triangles w i t h a c o m m o n vertex) 
is (5 , l ) - t r iangular convex and is neither convex nor the un ion o f a convex set 
and some isolated points. 

5.2. Theorem. A n y closed set S c 5 having the proper ty Ptt has either 

the proper ty T4 or Ts . 

Proof. Le t S a & be a set having the proper ty P0. Then by the results 
o f M c K i n n e y [ 7 ] , S is the un ion o f two convex sets St and S2 such that the u n 
i o n is not convex. Therefore there exists at least a pair o f points x and y o f S such 
tha t xy S. W e k n o w also by the def in i t ion o f PQ that i t is possible to f i n d a 
t r ip le {x, y, z) £ S, satisfying the fo l lowing inclusion and non-inclusion rela
t ions: 

xz a S and yz <£ S. 
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There are now two possibilities: 

(a) either this re lat ion may h o l d only for a single f ixed po in t ye S, or else 

(b) for a variable po in t y i n some subset o f S. 

I f we assume y as a f ixed po in t i n S, then for every z e S yz's w i l l be the only seg
ments that are no t contained i n S. Therefore for every f in i te subset {x, y, z, v} 
cz S, the segments xz, zv, xv w o u l d be contained i n S, hence the triangle xvz 
cz S. This implies under this assumption that the set S has the T4 property. 

I f we assume y as a vary ing po in t i n S, then for arbi t rary point sets such 
as 2 X = (A% y, z] and £ 2 = {x, t, k) the only segments contained i n S w o u l d be 
xz and xk. Let £ be the un ion o f I , and £ 2 , 

2 = 2 ^ ^ = {x,y,z,t,k} 

then by the P0 property we w i l l have also yt and zk contained i n S. Tha t means 
that for a certain choice o f f ive points belonging to S X K e r . S we can have only 
one triangle contained i n S, The purpose o f a such choice is evident since we can 
only get the least number o f triangles contained i n S by choosing points belong
i n g to 5 ' l

s \ K e r . 5 and Sz\Ker.S. I f we choose four points, two o f them belong
i n g to j S ^ K e r . S " and the other two to S2\Ker.S> no such triangle can be found. 
The f i f t h po in t can either be i n the K&r.S or else i n one o f the sets S^Ker.S or 
S2\Ksr.S. I f we take the f i f t h po in t i n Ker-S then i t may occur that more than 
one triangle contained i n S is obtained. So i t is only when ou t o f f ive points t w o 
o f them are chosen i n S ^ X K e r . S and the remaining three i n 5 2 \ K e r . S that we 
get a single triangle. Because o f this br ie f remark, on re turning to the last step o f 
our proof, we can c la im that the set S has the property Ts since 5 is the m i n i m u m 
number o f points for which only one triangle contained i n S is always to be 
found. 

5.2.1. Remark. The converse o f the theorem is no t true. Tha t is, a set 
may have the T5 property or the T4 property w i thou t having the P0 property. 
Take any set having the proper ty T5 . Then any quintuple o f points = 
{a, b, c, d, e} i n S is such that at least one o f the closed triangles defined by 
three o f these points is contained i n S. Cal l a, b, c the vertices o f any such triangle 
and let d, e denote the remaining points o f the quintuple ^ . The assumption 

ad, ae, de S 

does not contradict the fact that S has the property T5 , yet 

ad, ae <^ S 

does no t imp ly 

de cz S. 

Hence the property PQ does no t necessarily ho ld . 
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A n example evidencing such a s i tuat ion is supplied by a set S consisting 
o f the u n i o n o f the singletons formed by the two isolated points i\ and i2 w i t h 
any convex set C. 

5.3. Theorem. A n y closed, connected T 5 -convex set Scz^ has the P0 

property. 

Proof. Since S has the T5 property, for any quintuple !F ~ \xx , x2 , x 3 , 
x4 , x5] i n S, at least one closed triangle having as vertices three o f these points 
has to be contained i n S. Let the three vertices o f such a triangle be xy, x 3 , x s . 
I f we can show that whenever 

(cc) Xj x4 , x3 x4 , x4 x^ , x2 xx , x 3 x2 , x2 X^ c(l 5" 

implies 

x2 x 4 cz S 

then the p r o o f w i l l be complete. 

Since S is closed, there is a po lygonal arc P i n S, j o i n i n g any two points o f 
S having m i n i m a l length. Le t k denote the number o f sides o f P and let 

be the consecutive vertices o f P. 

a) W e c l a i m that k = 2. 

Assume k > 2 and take 

* 3 >yi »"'' yk = x4-

Consider the set o f five points 

y0 y, , y2 yk and y0 yk can no t belong to S, because had this been the case i t 
w o u l d be possible to shorten the polygonal arc P, e l iminat ing yt i n the f i r s t case, 
7 3 >• • • j A — i m t n e second case and yY ,y2,y3 yk-i i n the last case: i n a l l three 
cases this w o u l d contradict the hypothesis o f m i n i m a l length o f P. Under these 
conditions the quintuple 3?\ fails to determine any triangle contained i n S, against 
the hypothesis that S has the T5 property. This last contradic t ion shows that 
the assumption k > 2 is no t true. Hence k = 2, as claimed. 

b) W e n o w c la im that i f (a) holds x2 x 4 cz S. 

Consider again the quintuple — {xx, x2, x 3 , x4 , x5} under the hypothesis 
that Xj x3x5 cz S and that 

(ci) X^ X4 y X3 X4 , X 4 Xe; , X2 Xj , x3 x2 , X2 Xj cfr S . 

we c la im that x 2 x 4 c S. 
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Suppose x2x4 <p S. Because o f (a) neither x2 no r x4 is cantained i n x , x 3 x 5 . 
Then , as x 2 , x4 e S and S is connected, there exists a polygonal arc P j o i n i n g 
x2 and x4 having m i n i m a l length and by (a) exactly two sides. Le t yt denote the 
p o i n t o f intersection o f the t w o sides o f this polygonal arc. Then x2 yx ,ylx4cz S. 

Let y2 G x2 y l , y4 e yt x4 ; then yz»y4 e S. Consider the subset 

Because o f the Ts proper ty this subset must determine at least one triangle com
pletely contained i n S. Since x 1 x2 , x4 xi S the only possible triangles are 

xt y2 y4 , x2 y2 y 4 , x4 y2 y4 , 

However i f x2y2y4cz S then y4x2cz S and the polygonal arc w i t h vertices x 2 , y A , 
x4 (which is shorter then P) w o u l d j o i n x2 to x4 against the min ima l i t y condi t ion ; 

therefore x2 y2 y4 S . 

A similar process shows that x4y2x4 cp S, therefore & 2 determines exactly 

one triangle belonging t o S, 

(*) x t y 2 y 4 c S . 

Since y2 and y4 are chosen arbi t rar i ly on the segments x2yt and yL x4 i t is possible 

t o define t w o nets o f points 

a n d two directed sets D, E such that for a l l i e D and al l j e E, y 2 i i , y4tJ e S and 

l i m y2ti = x2 , l i m y 4 j = x 4 . 

ieD jeE 

Fur thermore , by (*) , 

P ^ i + 0 - P ) x , j e y 2 i ! y 4 j cz S, 0 < p < 1 . 

Since S is closed 

l i m p > 2 i i + ( l - ® y 4 j = P* 2 + ( 1 — P)JC4 e S . 
ieD 
jeE 

Hence 

x2 x4 cz S 

as claimed. 

5.3.1. Corollary. O n a closed, connected set S cz 2£ properties P0 and 

T5 i m p l y each other. 

Proof. Since S has the P0 proper ty then i t is the u n i o n o f two convex sets 

Sx and S2 . Let x1 , x2 e S such that xx x2 S, where S = Sx U S2 and 
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Si n Sz j£ <j> . I f x , € Sx then x2 $ Sf since is convex and t r iv ia l ly x t , x2 $ Ke r .S , 
therefore x , e S1\sKer.S and x2 e Sz\Ker. 5. Fur thermore x , and x 2 are 
no t the only pairs wh ich satisfy the above conditions since Sx and S2 are the 
connected convex sets. Let x3 , x 4 e S be another pair such that x 3 x 4 S1, 
where x 3 e 1 S ,

J \ K e r . 5 ' , x 4 e 5 2

N \ I C e r . S ' . Then for any quintuple o f points i n S 
such as 

P = { X j , x 2 , x 3 , x4 , , T 5 } 

P0 implies Xj x 3 x5 a S. 

By Theorem 5.3 i t can be directly concluded that the Ts property implies 
the P0 property. Hence 

5.3.2. Corollary. A n y closed, connected (5 , l ) - t r iangular convex set S is 

an Z,, set. 

Proof. See a) i n the p r o o f o f Theorem 5.3. 

5.4. Theorem. A n y closed, connected T5 convex set 5 c ^ is (3 , l ) -con-
vex. 

Proof. By using Theorem 5.3 we can conclude that S has the P0 proper ty . 
However P0 p roper ty is a generalization o f P3 property. Hence S is (3,l)-convex. 

5.4.1. Remark. I f a set is no t P3 i t can no t be P0 . T o prove this statement 
i t is sufficient to assume that some po in t tr iple, say p' = {x,y,z} a S exists, 
such that 

yz, zx, xy S , 

so that S is no t Pi . 

Let p* = {w, V] C S. Then the quintuple 

p = p' U p* - { x , y, z, u, v} c S 

is such that no ordering o f these f ive points satisfies the requirements o f the PQ 

property. 

5.4.2. Remark. Accord ing to Theorem 4 o f K a y and Guay p ] , any closed, 
connected m-convex set S cz 3? is an L m _ x set, so Theorem 5.4 confirms 
Corol lary 5.3.1 o f Theorem 5.3. However the converse o f the Theorem 5.4 is 
no t true. F o r a star-shaped pentagon is (3, l)-convex f yet it is not (5 , l ) - t r i angu-
lar convex. 

5.5. Lemma. I f S is (m, l ) - t r iangular convex then .S'is (in— l , l ) -convex . 

Proof. F o r any /w-ple in S at least one triangle, consequently at least three 
segments determined by these points are contained i n S since S has the Tm proper ty . 
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B y e l iminat ing any one po in t f r o m the m-ple, depending as to whether this 
po in t is one o f the vertices o f the triangle or not at most two o f the sides o f the t r i 
angle contained i n S are erased whi le the th i rd side remains i n S. Hence the set 
S is (m — l , l ) -convex . 

5.5.1. Remark. The fo l lowing example shows that the preceding result 
is best possible. 

Consider the set S as the un ion o f two closed triangles xyz and zip, each 
deprived o f the sides (xy), (xz) and (tp), (zp) respectively. 

5.6. Theorem. A n y m-triangular convex set is the union o f m—2 or fewer 
starshaped sets. 

Proof. I f S is m-tr iangular convex, S is (m — l , l ) -convex by Lemma 5.5. 
Hence by Theorem 2 o f K a y and Guay [ J ] , S is the un ion o f m — 2 or fewer star-
shaped sets. 

5.7. Theorem. I f 5 c ^ is a closed, connected 4-trianguIar convex set 
then S has no Inc poin ts ' 0 . 

Proof. Assume that 5 has at least one lnc po in t q i n S. Since q is an lnc 
p o i n t o f S there exist nets xs and yj i n S over the directed sets, D and E such that 

l i m Xj — l i m yj — q , 
feD jeE 

where x^j S for a l l i e D , jeE. Then for a l l the sets 

SW) = {*/ - x i + i > ys > yj+i) » 

where i e D, j e Ef 

Xjyj, x l + l yJ+l S. 

Therefore the quadruples 5 ( / J ) define no closed triangles contained i n S, contra
d ic t ing the hypothesis. Consequently the set S can no t contain any lnc points. 

5.7.1. Corollary. I f S a 2£ is a closed, connected 4-triangular convex 

set then S is convex. 

Proof. Theorem 5.7 implies that S has no lnc points. The fact tha t S is 
a convex set then fol lows immediately f rom Tietze's theorem [ 6 ] . 

5.8. Definition. Whenever the open segment j o i n i n g two points x and y 
is contained i n S, i t w i l l be said that "x sees y v ia S". A set T is "visual ly independ
ent via S" i f no two dist inct members o f T see each other via S. 

4 ) A point of local non convexity (or lnc point) x of S is according to Kay and Guay [ l ] , 
a point such that each neighbourhood V of x contains y, z e s such that yz <£ S. Such points 
are called points of strong lnc by Valentine [°] , as pointed out by the above authors. 
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5.9. Theorem. A closed m-triangular convex set S cz 3?, wh ich contains 
k lnc points which are visually independent via S, is the un ion o f m — 2k — 1 
or fewer starshaped sets. 

Proof. Let qx,..., qk denote the k lnc points o f S. Since S is closed, f o r 

each qf (i = 1 , . . . , k) there exist nets xi{ , y^ over the directed sets Ei , D; satis

fying the conditions 

(5.9.1) l i m xit = Vim yi. = g, 

and 

(5.9.2) X i l y f j + S 

for every je D, , le E; . 
Thus a set o f 2k points 

wh ich is visually independent via 5, is attained. Cal l "consecutive p o i n t " o f xif 

the po in t xif y l or o f yi} the po in t y i j + 1 and consider together w i t h S0 the set SQ

+ 

o f a l l consecutive points o f those i n SQ. The set SQ u S 0

+ = 5 j has 4k points wh ich 

are no more visually independent via S. By (5.9.2) St can at most define 2k seg

ments contained i n S, such that they span no triangle i n S. Fur thermore, since 

S is m-tr iangular convex there exists a set o f m — 1 points such that no po in t 

t r iple chosen amongst them defines a triangle contained i n S. Hence 

m — 1 > 4k. 

Let 

h ~ m — 1 — 4k. 

Then s < h w i l l denote the number o f points o f S that w i l l complete S0 to the 

maximal visually independent set o f S that is 

S* — Smax\^SQ 

for 

5 2 = {Pv..., />,,} where S* c 5 2 . 

I n order t o obta in the greatest number o f starshaped sets the set S m a x o f visually 

independent points o f S o f maximal cardinali ty has to be determined. This set 

corresponds to the case .f = h because when s = h S* ~ Sz and therefore 

and card .Sma, = 2k + h. i f , on the other hand some points o f S2 see only one 

other po in t o f S2 via S, Smax = S0 u St and c a r d . 5 m a i = 2k + s, s being the 
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card. Sv So, as previously stated the max ima l cardinali ty is reached for s = h 
which means that S2 consists o f all isolated points. Under this assumption the 
set is (2k + h + l)-convex and by Theorem 2 o f K a y and Guay i t is the un ion 
o f 2k - f h or fewer starshaped sets. 

5.9.1. Corollary. A closed m-tr iangular; convex set S c 2£ , which con
tains k lnc points such that they are visually independent v ia S is a ( i , l ) - convex 

m-\-\ 
set for < s <. m — 2k. 

2 

Proof. By Theorem 5.9 S m a t is the greatest possible maximal visually 
independent set that can be obtained, so i n this case S is (2k - f h + l)-convex. 
If, on the other hand, h = 0 then S a a x ~ S0 and consequently S is (2k + 1,1)-
convex. I n each o f these cases i t is sufficient to substitute m — 1 — 4k i n place 
o f h to get the upper and the lower bounds for s as given i n the statement o f the 
corol lary. 

5.10. Lemma. I f S c 2% is a closed, connected, /w-triangular convex set, 
the integer m is odd. 

Proof. The set S is connected and therefore S has no isolated points, so 
S does n o t have points that see only themselves via S. 

Let 5" denote a subset o f S such that every po in t o f Sr sees exactly one single 
other po in t o f S' via S. Ca l l = {S'} the class o f such sets S'. can be par t ia l ly 
ordered by inclusion and therefore, by Zorn 's Lemma, there exists a maximal 
set S'max e£f . 5 " n i a i can be described as fol lows: 

5 ' m a i = {Pj, Qj e S | sees only Qj and Q y sees only P} via 5; 

./ {\,-,h}. 

Consequently 

Card. S ' m „ = 2h 

and S'max is the un ion o f two visually independent sets, 

Sx'~ {Pl,...,P£ and S / ^ i ^ , . . . , £ , } . 

W e claim that 

2h = m - \ . 

a) I f 2h > m— I then 2h > m and the points o f i S " m a x , because o f m-tr ian
gular convexity w o u l d have to define a triangle contained i n S, i n contradict ion 
w i t h the hypothesis that every po in t o f S'max sees exactly one other point o f 
S' via S. 

b) I f 2h < m~\ let k = m — i — 2h and suppose the P/s are numbered 

so that 
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is the set consisting o f al l such points. Then no element o f T sees any other element 
o f the set S v ia S because otherwise maximal i ty w o u l d be contradicted. This implies 
that a l l the points o f T are isolated and this contradicts connectedness. Hence 

2h < m — 1 

is impossible. 

5.11. Theorem. For m > 3 a closed, connected, m-triangular convex set 
m — 1 

S having a single Inc po in t q is the starshaped un ion o f convex sets. 
2 

Proof. 1) S is a starshaped set w i t h respect to q. T o prove this consider 
the fo l lowing : 

a) By Theorem 5.10 under the present hypothesis m is odd , so let 
m = 2p - j - 1. 

b) S has a single Inc po in t q and has the Tm property. Therefore i f S' is a 
subset o f S such that every p o i n t o f S' sees exactly one single other po in t o f S' 
via S and i f £? = {S'}, any max ima l set S'max o f SP has cardinali ty m — \ = 2p. 

c) A s shown above i t is always possible to choose a set >S"m a x so that i t is 
the u n i o n o f two visually independent sets 

St = {xlt...,xp} , S2= {ylt...typ} 

such that 

(5.11.1) xtq , y t q , xt y, c S 

for every i e {},...,p] and xt yj S for i & j . Then, because S is m-tr iangular 
convex for any x e S \ { q } the set S = S'max u {x} has cardinali ty m and 
must define at least one triangle contained i n S. Because o f the choice o f Sx 

and S2 

*i xj , yt y} , xi yj ct S 

for any (ij) e { 1 , . . . , / ; } x {!,...,p} so this triangle has to be xt y-t x. This implies 
that there is always at least one index / such that 

X j yj x <zz S. 

Furthermore this index is unique: i f indeed another triangle, say xj y} x cz S then 

Since S has no Inc points except q, x is no t a Inc po in t and by Corro l la ry 2 i n 
Valentine [ 2 ] , 
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x-tXj cz S 

thus contradict ing the assumption o f visual independence i n Sx . Thus 

Xj V; x a S 

for a single value o f / and 

xx i cz S. 

d) By (5.11.1) 

xtq a S 

so, since x f ^ ? is no t a Inc poin t , again by Coro l la ry 2 o f Valentine 

xq cz S. 

This proves that S is a starshaped set w i t h respect to q. 

2) £• is the u n i o n o f p convex sets. T o prove this call Tj the triangle xtyt q 

p 
for every i e {\,...,p}. W e cla im that S= (J K/ where al l the Kt are convex 

( - 1 

sets such that Ti cz K} for a l l values o f the index i. 

Call (/ = 1,...,/?) the rays issuing f r o m q seperating two consecutive 
points o f Sx such that n S = { # } . Ca l l A (. the angular domain o f vertex q, 
defined by / , , containing the po in t xt ( / / ) + I = / J . 

Cal l 

= A , n S ; 
then x f e A!,- . 

Tij. is convex. I n fact, for any x , ^ e A',- since S is starshaped 

qy cz S, A,. 

hence 

xy cz S, Aj 

by Coro l la ry 2 o f Valentine applied to S and ordinary convexity to A f . Thus 

xy cz K( 

as was to be proved. 

5.11.1. Remark. The second part o f the p r o o f requires S to be a set i n 
the Euclidean plane bu t clearly a generalization by means o f polytops to E" for 
any f in i te n can be obtained. 

5.11.2. Corollary. The set S o f Theorem 5.11 is an L 2 set. 



24 S. AKDOĞAN 

Proof. Since S is starshaped w i t h respect to q, every po in t x e S sees q 
via S. Then for any x , y e S the two sided polygonal arc xqy joins these two 
points, so S is L 2 . 

5.12. Theorem. ï f S cz ^ is a closed, connected, m-triangular convex 
(m + 1 \ 

set then S1 is , 1 -convex. 

Proof. Since S has the Tm property and S is connected, there exists a max

i m a l set 

i n wh ich each element sees on ly one other element o f S' v ia S. By Theorem 5.10 
m — 1 is even, furthermore S has no isolated points and therefore S' can be ex
pressed as the u n i o n o f two visually independent sets w i t h the same cardinality. 

ffl •—J 

I n this case the cardinali ty o f each set is equal to — - — . This proves the ex

istence o f a maximal visually independent set contained i n S, w i t h cardinali ty 
m — 1 T T _ . m + 1 

. Hence S is convex. 

5.13. Theorem. A closed, connected, m-tr iangular convex set S c ^ 

is an L„,_i set. 
2 

Proof. I f JS* is a m-tr iangular convex set, S is — -convex by Theorem 
2 

5.12. Hence by Theorem 4 o f K a y and Guay f 1] , S is an L m _ x set. 

5.14. Theorem. I n a f in i te dimensional linear space every connected 
m-tr iangular convex set is polygonal ly connected. 

Proof. I f S is a m-triangular convex set contained i n a f in i te dimensional 
linear space, by Lemma 5.5 i t is a (m—l , l ) - co n v ex set i n this f in i te dimensional 
space, so that by Theorem 6 o f K a y and Guay i t is polygonal ly connected. 

5.14.1. Corollary. I n a f in i t e dimensional l inear space every connected 
m-tr iangular convex set is an L 2 m _ _ 5 . 

Proof. Under the hypothesis o f the Corol lary , again by Lemma 5.5 S is 
a (m — l , l ) -convex set i n a f in i te dimensional linear space and therefore by 
Coro l la ry 2 o f K a y and Guay, S is an L 2 m _ s . 
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C H A P T E R T H R E E 
P O S S I B I L I T I E S O F F U R T H E R G E N E R A L I Z A T I O N S 

The n o t i o n o f t r iangular convexity introduced i n the previous Chapters 
m a y be extended i n a fa i r ly obvious manner. 

A s a f i r s t step, consider tetrahedra! convexity, assuming that the ambient 
linear space i2" has dimension > 3. 

Then i n any such linear space ¿2°, a set 5" w i l l be said to have the ^ n

m proper ty 

{ o r to be tetrahedrally (m,n)-convex) i f S contains at least m distinct points ( w i t h 

m > 4) and i f for each subset o f m distinct points o f S at least n o f the (™) pos

sible closed tetrahedra determined by these points are contained i n S, m being 

the lowest and n being the highest integer giving rise to such a property. O b v i 

ously the integers m and n are related by the inequali ty 

1 < n < (*). 

I n part icular , i f a set S has the ff"m proper ty w i t h n = 1, i t w i l l be said to have 
the & m property. 

I t can be shown that 

gT 4 o convexity 

and i t is clear that several o f the theorems proved i n Chapter T w o can be extend
ed ( w i t h , o f course, some amendments) to tetrahedral convexity. 

M o r e i n general, suppose that the linear space 3£ has dimension d > r and 
i n any such linear space consider a set S, containing at least r + 1 distinct points. 
.S w i l l be said to be r-simpticially (m, n)-convex or t o have the rSm" property i f 
f o r each subset o f m distinct points ( w i t h m > r + 1), at least n o f the pos
sible r-simplici determined by these points are contained i n S, m being the l o w 
est integer and n being the highest integer g iv ing rise to such a property. Aga in , 
the integers m and n w i l l be related by the inequali ty 

1 < » < ( , ? , ) -

I n particular, i f a set S has the rSm" proper ty w i t h n = 1, S w i l l be said t o have 

the rSm" property. 

Aga in , i t can be shown that 

r S r + 1 o convexity 

and again, most o f the results, adjusted as far as integers appearing i n the bounds 
are concerned, obtained i n Chapter T w o can be carried on to r-simplici ally (m, n)~ 
convex sets. 
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ÖZET 

Bu çalışmada, bugüne kadar tanımlanan zayıflatılmış koııvekslik çe
şitleri ile bazı yakınlıkları olan, özel koşullar altında da konvekslik tanımı 
ile çakışan, (/«,«) - üçgensel konvekslik adı verilen yeni bir kavram ithal 

edilmekte ve bununla ilgili bazı. sonuçlar elde edilmektedir. 


