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" AXISYMMETRIC PLANE-STRAIN THERMOELASTIC MIXED
BOUNDARY VALUE PROBLEM OF AN ELASTIC STRIP

M. LAL - R.C. JAIN

The present paper secks to solve the 'steady-s'tate axisymmetric plain
strain thermoelastic problem of an elastic strip with one face stress free and
the other face resting on a rigid frictionless foundation. The free surface of
the strip is subjected to arbitrary flux on the part @ < | x| << 1, whereas the
rest of the surface is at zero temperature. The surface in contact with the
foundation is insulated. The problem is reduced into triple integral equations
with cosine kerne] and a weight function. These equations are solved by
using finite Hilbert transform techniques.

1. INTRODUCTION

Steady-state thermoelastic problem for the elastic layer has been consid-
ered by Sneddon and Locket ['], Martin and Payton [*] and Dhaliwal [*].
The authors [?] restricted their analysis to the cases in which the temperature
is prescribed on both faces of the layer, and both faces are stress free or one face
is siress free and the other rests on a rigid foundation. Dhaliwal [*] considered
an axisymmetric problem with mixed thermal boundary conditions on the stress
free surface. These mixed boundary value problems lead to dual integral equa-
tions of the type considered by Lebedev and Uflyand [*], Erdelyi and Sneddon
[’], Noble [¢], and Love ["].

In this paper the plane-strain thermoelastic mixed problem of an elastic
strip has been considered. Section 2 gives the Fourier transformed solution
of the plane-strain steady-state thermoelastic equations, Section 3 gives the bound-
ary conditions and derive the appropriate triple integral equations. The triple
integral equations are reduced to a single Fredholm integral equation of the
second kind in section 4. The iterative solution of the integral equation is ob-
tained in section 5 for d » 1 up to the order d~1° . The analytical expressions up
to the order d~'° are obtained in section 6.

2. SOLUTION OF THE GOVERNING EQUATIONS

The steady-state thermoelastic equations for plane strain may be written
as (see Nowacki [®])




34 ' M. LAL - R.C. JAIN

20 —v)a?ufax +(1 —2v)Pu/ad y* +9*v/ax0y=2a (1 +V)3 T/o x,(1)
(1—=2v)3*v/3x*+2(01 —v)Pv/3y*+8*u/axdy=2a (1 +v)d T/3y,(2)

FT/ax*+ 82 T/oy*=0, (3)
where

(x,y) = cartesian -coordinate system

u,v = x, y components of displacement vector respectively

v = Poisson’s ratio '

o = coefficient of linear thermal expansion

T = temperature distribution.

The components of the stress tensor associated with the displacement field
are given by

O, ,=2n [(l =V)du/dx+vav/ay —al(l +‘V)T}/(1-2V), “
o,=2n[(l—Vdv/dy+viu/dx—a(l+VTI/( —2v), (5)
o,=uldu/ay+aov/ax], , (6)

where p = E/[2(1 4 v) ] represents the modulus of rigidity and E is the Young’s
modulus of the Elastic material. To solve these equations of thermoelasticity,
we introduce the following Fourier sine and cosine transforms :

feon = Flfmnix > k1=t [ fopsintas, @
. ) 0 . ,
Fon) = Efwy)x»kl=@/0f [ fxycoskod. . @®
0
Now it can be shown that equations (1) - (6) may be written in the form_
2 — k) u— (mt—)kDv=—BkT, ()
@D — kv + 2~ )kDi—BDT, (10)
D= T =0, o - - (1)
Go—pl— D5 +miku — BT, o
6, =ulm —Dku +mDo —BTI, SR ( k)'
Gu=ulDu —kvl, - (14)
where

D=d/dy;p=2014+va/(1—2v);m=2(1—v)/(1—=2v). (15)
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The solution of the set of simultaneous ordinary differential equations (9)-
(11) may be written as

T — A cosh(ky) + Bsinh (k) ; : : (16)
u= (A4, + ky A;) cosh (kp) + (B, + ky By} sinh (ky), a7
o = (d; +ky A,) cosh (ky) + (BJ\ + ky B,) sinh (ky) , ' (18)

where 4, B, 4, , B,(i =1, 2, 3, 4} are arbitrary functions of %, although not all

of these are independent. Substituting f, U, v from equations (16)-~(18) into
equation (9) and equating the cocfficients of cosh (kp), sinh (ky), ky cosh (ky)
and ky sinh (ky) from both sides, we obtain

Ay =— B, = [k(m* — 1) (4, + B) — B B] [ k(m?* - 1)

19
Ay = — By = — Ukl® — 1) (4, + B)) — B AT [ kom® + 1) )

Substituting from equations (16)- (18) into equations (12}~ (i4), the follow-
ing expressions for the components of stress are obtained :
= Im (A, A ky Ay b AYu— 2k A, —BA
+ (m* — 2) (B, + ky B,) k] cosh (ky) +
A [ (B, +ky B, + BYk — 2k B, | (m* —2)(A thky Apk —
— B B1sinh (k)] , | | (20)
&,, = u[[(m* —2) (4, 4 ky Ay ke -+ m* (4, + By + ky BY ke —
— BA Tcosh (kp) + [(n2 — 2) (B, + ky Bk — B B+
+ m? (B, - Ay — ky A}k ] sinh (kp) ], ' (21
0, =khk[(4d, +2ky A, + B, — By)sinh (ky) +
| + (B, +2ky B, + A4, — A}cosh (ky)] , . (22}
where A4, ,'A, , B, and B, ar¢ given by equation (19).

3. STATEMENT OF THE PROBLEM AND APPROPRIATE TRIPLE
INTEGRAIL EQUATIONS :

The plané-strain problem of an infinite, homogeneous, isotropic, compress-
" ible elastic strip occupying the region 0 < y < d s considered, such that the
surface y == 0 is stress free and the surface y = d is resting on a rigid, friction-
less foundation. By considering plane strain perpendicular to the z-axis, the
stated mechanical boundary conditions may be written as follows :
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g,=0c,=0o0ny=0

23
v =0, =0 ony=~#h @)

Using equations (18), (19), (21) and (22), that boundary conditions (23) will be
satisfied if

B = B[k (kd) ][ A sinh (kd) + kd cosh (kd) ] sinh (kd) +

-+ B[ kdcosh? (kd) — m* kd — (m* — 1) sinh (kd) cosh (k) ] ] ,
B, =B[kdGhd) [ A[m?kd + kd sinh? (kd) +

+ m? sinh (kd) cosh (kd) } + B [ kd sinh (kd) cosh (kd)]] , 24)
A —m B —BAK /2,
A, —m? B — BBKY/2,

‘where
S(x)=m*(l —m®) [2x + sinh (2x) ]

Equations (16} - (22) and (24) determine T o, v, L ;yy and Exy_ in terms of
only two unknown functions, namely A(k) and B(k) which are to be determined
from the thermal boundary conditions.

If the surface y = d is insulated and on the surface y = 0 the temperature
is zero on the part 0 < | x| << a,| x| > 1, whereas the flux is prescribed on the
part a << { x| < 1, the thermal boundary conditions may be written as

T=00<|x|<a|x|>1aty=0

1 (25)
E:(_Z_) J(x}, a<|x| <1, aty=0
ay L
L0 0 <ixl < o, aty =4, @)
})

where f(x) is assumed as a continuously differentiable function for x in (a, 1).
The boundary condition (26) will be identically satisfied on taking

A(k) = — B(k) coth (kd). an
From (19), (24) and (27) the following results are obtained:
A,—0;A4,—0;B,—0;B,=0
" A, = B, = — Bk A(k) tanh (kd) /2 (m* — 1) (28)
A =B, =Bk Ak) [ 2(m* — 1)

and hence
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T = A(k) cosh k (y — d) | cosh (kd)

u = B A(k) cosh k (v — d) | 2 (m* — 1) k cosh (kd) 29)
v = B A(k) sinh k (y — d) / 2 (m* — 1) k cosh (kd)
5,.=0,6,=0, 6, =0,
which is in agreement with results of Sneddon and Locket [].
The boundary conditions (25) lead to the triple integral equations
fA(k)cos(kx)dk:0,0<}x[<a,jx[>1, (30)
]
/ ke A [1 + H (k)] cos (kx) dk = 2] 1P f(x), a<|x]| <1, (1)
]

where

H2x)= -2 (1 + &1,

4. THE SOLUTION OF THE TRIPLE INTEGRAL EQUATIONS

For solving the set of triple integral equations (30) and (31) the method of
Lowengrub and Srivastava [?] has been adopted. Let

o0

A(k) = ( ;)7 kTt f A%y sin (kt) dt (32)
4]
where A(12) is the solution of the Fredholm integral epuation of second kind
1
h(x2) -+ f W) K, (%, 1) dt = M (32, a < |x|< 1, (33)
satisfying the condition
1
[r@yd=o, (34)
and ' |
1
2 4241 — p2ya
Kl(_,\‘.,t):ﬁ i X a ﬂf 1 LARY: sz(y:t) dy (35)
a2 V11— y:— @ yt— x2

@

with
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K, (1) = f H (fed) cos (ky) sin (k) de, (36)
Q0 x :

and

o _'_i(x?—az );_fl(n_y?- ) wO)

752 l_xz yz_az y2_x2

+CO @A -, BNy
where C” is an arbitrary constant to be determined from condition (34) Now
integrating (33) with respect to x from « to 1 and using (34), we find that

1 f 1
1 . 4
o=t f h(tz){f K, ¢ r)dx} i f Weyds,  (39)

where

. .
iy )% [ 1—y )é W) dy, (39)

l_xz kyz_;a2 y_xz

W(x*) = (

and F is an elhpttc mteg;ral of the first kind.

Hence from equatlons (33), (37) and (38), d must sattsfy the mtegraI equa—
tion- .
W) - f WK (2 1) dt = POPY, a < |x| < 1, (40)

where

1
KG2, 1) = K, (e 1) — % [ (2 — @) (1 — 3]0 f K2, 0 dx, - (41)
o 1 .
P(?) = % { W) — % [ — a?) (1 — 2] f W(x%) dx} )

5. ITERATIVE SOLUTION OF THE INTEGRAL EQUATION

If the case d » 1 is considered then by substituting kd = ¢ and expandmg
cos (py [ d) and sin (¢y /[ d) in series, we may write (36) in the form

@

Kz(y,r_)—z e M . “3)

n=0

where




AXISYMMETRIC PLANE-STRAIN THERMOELASTIC...

M, 0,9) = — [P+

and

o0

1y '
— H w1 g
T @at ) j @e ¢

0

Now from (43), (35) and (41), we find that

w0

B 2,t2
O D e
) 8ry da

n=1

where
= [(x* — @) (1 — P2,
B =IA,(x»,
B, =1, [4,(:) 1 +8 4, (x)],
B, =LA, () " +10 A, (P 17 + 4, ()],

B, = L[4, () 16+ 21 4, (D 14 + 74, (6H) 2 + 4,6

with

A, =16(x*—E/F),

A, H=802x"+o,x +a,),

A, G =108 x+4a,x* —a* X+ a,),

A, (D) =TU6x® + 80y x5 —2a*x* + a0t x> ),
where .

o =1-—a%,

g =—{1+day,

@, =?E|F—2I',

a,—c*(l +3NE[F+40* —81I,

a,=a*(l +2@ +5aVE/F+20*1 +3a) 1 +

+8a21, — 161, ,

we find that

39

(44)

(45)

(46)
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J=—a+E|F,
L'=[—a& 1 @—aE|F]/3,
L'=[a@ 4 +@8—3a*-2aYEJF]/15,
I = {a*(4a* + 52 — 2i) + (48 — 162> —9a* —8a®) E/F] /105,
where F and £ are elliptic.integrals of the first and second kind respectively de-

fined by

F=F(,n/2) = f de | Y,

{
E=E@,n/2 = fx2dx/Y.

For f(x) == T, we find from (39} that _
WeR) =T, [ —a (1 - (2,
and hence from (42) we find that
P(?) =T, 4, () [Bn Y ). (47)
Since d » 1, | K(x%, ¢}| << o where o < 1, the solution to (40) may be taken

in the form

h(x) = 3 M, jdn . (48)

r=0 -
Now substituting for K(x?, £) and A(x?) respecting from (44) and (48) in (40) and
equating the various powers of d from both sides, we obtain

M, (x%) = P(x")

] 1
Mn (xz) = L Z ./‘ t Bm (x29 tz) Mm-m (tz) dt »
snY
m=1 o
n=1,2,3,....

By carrying out the above iteration process up to M, , we find that

Hx) = I:”D? B+ B2+ By x* + By 30+ By 20 + (1), (49)

where
P,=—8E[F+4EL b d? +c,d™* +dyd 4 e,d™*,
B,=8 — 4L bd24cd*+d ds+ed?,
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By=C,d*+d,d® +e,d*¥, (50)
CBy=dd T e, d?
p=e,d?
with

by=4(, —r, EfF)[m,
by=16(¢,—rE/F)/x,
b,=32(,—r,E/F)/x,
by=64(r, — 1, E[F)[ 7, - | NG
by=32(cgr, +r,+er)ln,
be=16(cyry,+ 7 Fe,1) [ 7, o
¢,=—2I2b2E[F \ Ih,E/F—6lb,a,
o, =2I2b2 — 1, b, — 61 b, a,, (52)
ey =— 121 b,,
dy=E[b,— L1, b [2F] — 5Lba, — 5SLbya, (2 +

+ L1 bybia [3+ED[SF, ‘
d=—1I,(b, +10b o, —35a2b) /2 +

F L0 b, +6b,0) |2~ Iib (8, o (53)
dy= — 10 L,{b,+b,0)) + 61,1, b, b, ,
dy=—201b,,

ey = I, (26, E|F—42b,0, —35b, a, — 14'b,a,) /8 —

— L Lb (b,E/F—10b,a, —5Shya)/4 +

+2LE(dry +din t+dyr,t+dir) [ nF+

+ 1 (b EJF—3bsa)/16, '
e,=—I(2b,+42b,0, — 240’ b + 4 bya) /8x +

I L b (b, + 10b, 0, — 3504 b)) [ 4 —

— 215 dyry+dr,+dyr,+dyr)/n—

— I (b, +3b50), o . .
e, = —TI,(3by 1 5b ag — a2b) [ 2+ ST, 1, by (b, + by ag)
3L b8, S (54)
ey = — TL(5b, +2bya)/m + 101, I, b, b,

ey =—21Lby,
and
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- x2n+1 : .
,,,,:j dx, n=0,1,2, ... . (55)
Y
a

so that

rg=m/2,

ry=n(l +a)/4,
rn=n(3+2a+3a"/16,
ry=n(5+3a>+4+3a*+54%/32,

ry = m(35 + 202 + 18 4 20 15 + 359 / 256

6. EXPRESSIONS FOR THE PHYSICAL QUANITEIES

From equation (29) we find that

Txy)y=(2/ n)'i" f [A k) cosh(y — dY k /‘Vcosh (ke dic , (56)
0
[ w {x,p) = m f [A(k) cosh (v — d) k [ cosh (kd}] dk , (57)
v (x,y) = TI3—-— f fA(kysinh(y —d) k /k'cosh (kd)] dk. (58)
V2 (m? 1) -

Now the boundary values at ¥ = 0 for the physical quantities for the case
of f(x) = T, are obtained. From equations (32) and (56) we find that the temper-
ature on the boundary y =0 is given by

1

T(x,O):iz‘_f (R dr, (59)

since
13
=1, [ h@)dr=o.
0

Substituting for 4{#?) from (49) in (59), we obtain
T(x, 0) = Z ba o +0 ). (60)

The total quantity of heat passing per second through the edge y = 0, a << x < |
is given by
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I '
Q:“xf(a t/ay) :.udx, (61)

where % denotes the coefficient of conductivity of the material, From equations
(32), (56) and (61), we find that for fi(x) = T
‘ ) 1 I 1
0= (—) % f [th(®) /(2 — xD)]dr — (2/n)xf Rt K, (x, 1) dt
T

(4

where
! T 2 2 10 '
R{AH[Y N(x 0(d™ ,
8 REDIY,+ NEH +0d, »>1,
7]
where
4 o
R(x?) = E B, X2,
n=0
) 4 4
2 _ _
N(x?) _{'_‘ Fo g B, X" 1, ? B X iy By 4 By XY + 1y By ] »
™ —f
=i =2
1 552
Y, =& — %) (1L —x)]*,
1
Y, = [ —a) 2= D,
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OZET
Bu calismada bir yiizii serbest, diger yizii siirtiinmesiz ve kati bir temel
fizerinde bulunan bir elastik seridin kararli, eksen simetrili, dizlem gerilimli
termoelastik probleminin ¢Sziimil aragtirilmaktadir,




