SOME THEOREMS ON SPECIAL PROJECTIVE MOTION IN A SPECIAL SYMMETRIC FINSLER SPACE

H.D. PANDE - J.P. PANDEY

We consider an infinitesimal point transformation

$$\bar{x}^i = x^i + v^i(x) dt \qquad (A)$$

where $v^i(x)$ is any vector field and dt an infinitesimal constant. We define that the necessary and sufficient condition that (A) be a special projective motion in F_h is that the Lie-derivative of $\pi^i_{jk}(x, \dot{x})$ with (A) itself has the form

$$\mathcal{Z} \, \, \pi^i_{jk} \left(x \, , \dot{x} \right) = \delta^i_j \, \, \epsilon_k \, + \, \delta^i_k \, \epsilon_j \, + \, \phi_{jk} \, v^i \, ,$$

where ϵ_{k} is any non-zero covariant vector and

$$\phi_{jk} = \phi_{kj}.$$

Certain theorems concerning the special projective motion and special curvature collineations have been obtained in a Finsler space F_n .

1. Introduction

Let us consider an *n*-dimensional Finsler space F_n [1] in which the metric tensors $g_{ij}(x, \dot{x})$ and $g^{ij}(x, \dot{x})$ are symmetric in their indices i and j and are homogeneous of degree zero in \dot{x}^i .

The projective covariant derivative [3] of a vector field $X^{i}(x, \dot{x})$ is given by

$$X_{((k))}^{i} = \partial_{k} X^{i} - (\partial_{h} X^{i}) \pi_{rk}^{h} \dot{x}^{r} + X^{h} \pi_{hk}^{i}$$
(1.1)

where

$$\pi_{hk}^{i}(x,\dot{x}) \stackrel{\text{def.}}{=} \left\{ G_{hk}^{i} - \frac{1}{n+1} \left(2 \delta_{(h}^{i} G_{k)r}^{r} + \dot{x}^{i} G_{rkh}^{r} \right) \right\}$$
 (1.2)

is called projective connection coefficient and is also positively homogeneous function of degree zero in \dot{x}^i and satisfies the following identities:

1)
$$\partial_i = \partial/\partial x^i$$
 and $\dot{\partial}_i = \partial/\partial \dot{x}^i$.

a)
$$\pi_{hkr}^i \dot{x}^r = 0$$
 b) $\dot{\partial}_J \pi_{hk}^i = \pi_{Jhk}^i$ and (1.3)

c) $\pi_{hk}^i \dot{x}^h = \pi_k^i$;

we have the following commutation formulae:

$$\dot{\partial}_h \left(T^i_{J((m))} \right) - \dot{\partial}_h T^i_{J((m))} = T^i_i \pi^i_{rhm} - T^i_r \pi^i_{Jhm}$$
 (1.4)

and

$$2T'_{J((h))((k))} = -(\dot{\partial}_r T'_J)Q'_{hk} + T'_J Q'_{rhk} - T'_r Q'_{lhk}, \qquad (1.5)$$

where

$$Q_{jkh}^{i}(x,\dot{x}) \stackrel{\text{def.}}{=} 2 \left\{ \partial_{[h} \pi_{k]j}^{i} - (\dot{\partial}_{r} \pi_{f|k}^{i}) \pi_{h|s}^{r} \dot{x}^{s} + \pi_{f|k}^{r} \pi_{h|r}^{i} \right\}^{2}$$
 (1.6)

are called projective entities and satisfy the following identities [3]:

a)
$$Q_{hji}^{l} = Q_{hj}$$
, b) $Q_{hk}^{l} \dot{x}^{h} = Q_{k}^{l}$, c) $Q_{jhk}^{l} \dot{x}^{j} = Q_{hk}^{l}$ (1.7)

and

$$d) \quad Q_{ki}^i = Q_k .$$

Let us consider an infinitesimal point transformation:

$$\dot{x}^{i} = x^{i} + v^{i}(x) dx, \qquad (1.8)$$

where $v^{i}(x)$ is any vector field and dt an infinitesimal constant. The Lie-derivative of a tensor field T_{i}^{i} and the projective connection coefficient is given by

$$\mathcal{L}_{y} T_{j}^{l} = T_{j((h))}^{l} V^{h} - T_{j}^{h} V_{((h))}^{l} + T_{h}^{l} V_{((j))}^{h} + (\dot{\partial}_{h} T_{j}^{l}) V_{((r))}^{h} \dot{x}^{r}$$
(1.9)

and

$$\mathscr{L}_{y} \pi_{jk}^{i} = V_{((j))((k))}^{i} + Q_{hjk}^{i} V^{h} + \pi_{jkh}^{i} \dot{x}^{r} v_{((r))}^{h}. \tag{i.i0}$$

We have the following commutation formulae:

$$\dot{\partial}_k \left(\mathcal{L} T_j^i \right) - \mathcal{L} \left(\dot{\partial}_k T_j^i \right) = 0 \tag{i.11}$$

$$\mathscr{L} T^{i}_{j((k))} - (\mathscr{L} T^{i}_{j})_{((k))} = T^{h}_{j} \mathscr{L} \pi^{h}_{kh} - T^{i}_{h} \mathscr{L} \pi^{h}_{kl} - (1.12)$$
$$- (\partial_{h} T^{i}_{j}) \mathscr{L} \pi^{h}_{ks} \dot{x}^{s}$$

and

$$2 \mathcal{L}_{y} \pi_{h[k(j))}^{i} = \mathcal{L}_{y} Q_{jkh}^{i} + 2 \mathcal{L}_{y} \pi_{mlj}^{i} \pi_{klsh}^{i} \dot{x}^{m}.$$
 (1.13)

We have the following definitions:

2
) $2A_{(hk)} = A_{hk} + A_{kh}$ and $2A_{[hk]} = A_{hk} - A_{kh}$.

Special projective curvature collineations [4]: An F_n is said to admit a special projective curvature collineation if there exists a vector V^i such that

$$\mathscr{L} Q_{jkh}^l = 0. (1.14)$$

Special projective Ricci collineations [4]: An F_n is said to admit a special projective Ricci collineation provided there exists a vector V^i such that

$$\mathcal{L}_{ij} Q_{jk} = 0. \tag{1.15}$$

Definition 1.1. A finsler space F_n is said to be a special projective symmetric space if the projective covariant derivative of $Q_{hik}^i(x,\dot{x})$ satisfies the relation

$$Q_{hjk((r))}^{i} = 0. (1.16)$$

In a special projective symmetric Finsler space we have the following identities:

a)
$$Q_{jk((r))}^i = 0$$
, b) $Q_{k((r))}^i = 0$, c) $Q_{((r))} = 0$. (1.17)

2. Special curvature collineation and special projective motion

Definition 2.1. The necessary and sufficient condition that (1.8) be a special projective motion in F_n is that the Lie-derivative of $\pi_{jk}^i(x, \dot{x})$ with (1.8) itself has the form [5]:

$$\mathcal{L} \pi_{jk}^{i}(x,\dot{x}) = \delta_{j}^{i} \varepsilon_{k} + \delta_{k}^{i} \varepsilon_{j} + \phi_{jk} V^{i}, \qquad (2.1)$$

where $\varepsilon_k(x)$ is any non-zero covariant vector and

$$\phi_{ik} = \phi_{ki}. \tag{2.2}$$

In view of (2.1), (1.3) b) we have

$$\mathscr{L}_{\nu} \pi_{hjk}^{i} = \phi_{hjk} V^{i}, \qquad (2.3)$$

where

$$\phi_{hjk} \stackrel{\text{def.}}{=} \dot{\partial}_h \, \phi_{jk}. \tag{2.4}$$

In view of (1.13) and (2.1) the Lie-derivative of $Q_{jkh}^{i}(x, \dot{x})$ takes the following form:

$$\mathcal{L}_{v} Q_{jkh}^{i} = \delta_{k}^{i} \, \varepsilon_{h((j))} - \delta_{j}^{i} \, \varepsilon_{h((k))} + (\phi_{hk((j))} - \phi_{hj((k))}) \, v^{i} + (2.5)
+ \phi_{hk} V_{((j))}^{i} - \phi_{hj} V_{((k))}^{i} +
+ (\phi_{mk} \, \pi_{jsh}^{i} - \phi_{mj} \, \pi_{ksh}^{i}) \, V^{s} \dot{x}^{m},$$

where we have used

a)
$$\varepsilon_1 \dot{x}^1 = 0$$
 and b) $\varepsilon_{j((k))} = \varepsilon_{k((j))}$. (2.6)

If a special projective motion of F_n becomes a special projective curvature collineation the formula (2.5) takes the form

$$\delta_{k}^{i} \, \varepsilon_{h((i))} - \delta_{j}^{i} \, \varepsilon_{h((k))} + (\phi_{hk((j))} - \phi_{hj((k))}) \, V^{i} + \phi_{hk} \, V^{i}_{((i))} - \\
- \phi_{hj} \, V^{i}_{((k))} + (\phi_{mk} \, \pi^{i}_{jsh} - \phi_{m_{i}} \, \pi^{i}_{ksh}) \, V^{s} \dot{x}^{m} = 0 \,.$$
(2.7)

Transvecting (2.7) by \dot{x}^h and noting (1.3) a), (2.6) we obtain

$$\{ (\phi_{hk((i))} - \phi_{hi((k))}) v^i + \phi_{hk} V^i_{((i))} - \phi_{hi} V^i_{((k))} \} \dot{x}^h = 0,$$
 (2.8)

where we have used the fact that $x^{i}_{(k)} = 0$.

Thus we have:

Theorem 2.1. In a Finsler space F_n if a special projective motion characterized by (2.1) becomes a special projective curvature collineation, then equation (2.8) holds.

Contracting (2.5) w.r.t. indices i and h and using (1.7) a) we get

$$\mathcal{L}_{\nu} Q_{jk} = \delta_{k}^{i} \, \varepsilon_{i((j))} - \delta_{j}^{i} \, \varepsilon_{i((k))} + (\phi_{ik((j))} - \phi_{ij((k))}) \, V^{i} +
+ \phi_{ik} \, V_{((j))}^{i} - \phi_{ij} \, V_{((k))}^{i} + (\phi_{mk} \, \pi_{lsi}^{i} - \phi_{m_{i}} \, \pi_{ksi}^{i}) \, V^{i} \dot{x}^{m} \,.$$
(2.9)

If F_n admits a special projective Ricci collineation, then in view of (1.15), (2.9) takes the form

$$\delta_{i}^{k} \, \varepsilon_{i((l))} - \delta_{j}^{i} \, \varepsilon_{i((k))} + (\phi_{ik((j))} - \phi_{il((k))}) \, V^{i} +$$

$$+ \, \phi_{ik} \, V_{((j))}^{i} - \phi_{il} \, V_{((k))}^{i} + (\phi_{mk} \, \pi_{isi}^{i} - \phi_{mi} \, \pi_{ksi}^{i}) \, V^{s} \dot{x}^{m} = 0 \, .$$

$$(2.10)$$

Transvecting (2.10) by \dot{x}^{j} and noting (1.3) a), we get

$$\{ (\phi_{ik((j))} - \phi_{ij((k))}) V^{i} + \phi_{ik} V^{i}_{((j))} - \phi_{ij} V^{j}_{((k))} - \phi_{ni} \pi^{i}_{ksi} V^{s} \dot{x}^{m} \} \dot{x}^{j} = 0 .$$
 (2.11)

Thus we have:

Theorem 2.2. In an F_n if a special projective motion becomes a special projective Ricci collineation, then the result (2.11) holds.

3. Special projective symmetric space

Applying the commutation formula (1.12) to the projective entity $Q_j^l(x,\dot{x})$, we get

$$\mathcal{Z}_{\nu} Q_{j((k))}^{i} - (\mathcal{Z}_{\nu} Q_{j}^{i})_{((k))} = Q_{j}^{h} (\mathcal{Z}_{\nu} \pi_{kh}^{i}) - Q_{h}^{i} (\mathcal{Z}_{\nu} \pi_{kj}^{h}) - (\dot{\partial}_{h} Q_{j}^{i}) (\mathcal{Z}_{\nu} \pi_{ks}^{h} \dot{x}^{s}).$$

$$(3.1)$$

In view of (1.7) a), (1.17) b), (2.1), (2.6), the equation (3.1) takes the form:

$$(\mathscr{Z}_{\nu}Q_{j}^{l})_{((k))} = Q_{k}^{l} \, \varepsilon_{j} + Q_{k}^{l} \, \phi_{kj} \, V^{h} - Q_{j}^{h} \, \delta_{k}^{l} \, \varepsilon_{h} - Q_{j}^{h} \, \phi_{kh} \, V^{i} +$$

$$+ (\hat{\partial}_{h} \, Q_{j}^{l}) \, \phi_{hs} \, V^{h} \dot{\chi}^{s} \, .$$

$$(3.2)$$

Contracting (3.2) w.r.t. indices i and j we get

$$(\mathcal{Z}_{\nu}^{i}Q_{k}^{i})_{((k))} = Q_{k}^{i} \, \varepsilon_{i} + Q_{h}^{i} \, \phi_{ki} \, V^{h} - Q_{k}^{h} \, \varepsilon_{h} - Q_{i}^{h} \, \phi_{kh} \, V^{i} +$$

$$+ \left(\dot{\partial}_{h} \, Q_{i}^{i} \right) \, \phi_{kh} \, V^{h} \dot{x}^{s} \, .$$

$$(3.3)$$

Thus we have:

Theorem 3.1. In a special projective symmetric Finsler space if an infinitesimal transformation (1.8) defines a special projective motion, then equation (3.3) holds.

Transvecting (2.5) w.r.t. \dot{x}^{j} and noting (1.7) c) we get

$$\mathcal{Z} Q_{kh}^{l} = \delta_{k}^{l} \, \varepsilon_{h((j))} \dot{x}^{j} - \varepsilon_{h((k))} \dot{x}^{l} + \{ (\phi_{hk((j))} - \phi_{hj((k))}) \, V^{l} + + \phi_{hk} \, V_{((j))}^{l} - \phi_{hj} \, V_{((k))}^{l} - \phi_{mj} \, \pi_{ksh}^{l} \, V^{s} \dot{x}^{m} \} \, \dot{x}^{j}.$$

$$(3.4)$$

Applying the commutative formula (1.4) to the projective entity $Q_{jk}^{i}(x, \dot{x})$ we obtain

$$\dot{\partial}_{h}(Q_{lk((m))}^{i}) - (\dot{\partial}_{h} Q_{jk}^{i})_{((m))} = Q_{jk}^{s} \pi_{hms}^{i} - Q_{sk}^{i} \pi_{jhm}^{s} + Q_{sf}^{i} \pi_{khm}^{s}$$
(3.5)

which in view of (1.16), (1.17) a) reduces to the form

$$Q_{jk}^{s} \pi_{hms}^{i} - Q_{sk}^{i} \pi_{jhm}^{s} + Q_{sj}^{i} \pi_{khm}^{s} = 0.$$
 (3.6)

Applying \mathcal{Z} operators to (3.6) and using (3.4), (2.3), we get

$$\left[\delta_{j}^{s} \varepsilon_{k((r))} \dot{x}^{r} - \varepsilon_{k((f))} \dot{x}^{s} + \left\{ (\phi_{kj((r))} - \phi_{kr((f))}) V^{s} + \right. \\
 + \phi_{kj} V_{((r))}^{s} - \phi_{kr} V_{((f))}^{s} - \phi_{mr} \pi_{klh}^{s} V^{l} \dot{x}^{m} \right\} \dot{x}^{r} \right] \pi_{hms}^{i} - \\
 - \left[\delta_{s}^{i} \varepsilon_{k((r))} \dot{x}^{r} - \varepsilon_{k((s))} \dot{x}^{i} + \left\{ (\phi_{ks((r))} - \phi_{kr((s))}) V^{l} + \right. \\
 + \phi_{ks} V_{((r))}^{i} - \phi_{kr} V_{((s))}^{i} - \phi_{mr} \pi_{slk}^{i} V^{l} \dot{x}^{m} \right\} \dot{x}^{r} \right] \pi_{jhm}^{s} + \\
 + \left[\delta_{s}^{i} \varepsilon_{j((r))} \dot{x}^{r} - \varepsilon_{j((s))} \dot{x}^{i} + \left\{ (\phi_{js((r))} - \phi_{jr((s))}) V^{l} + \right. \\
 + \phi_{js} V_{((r))}^{i} - \phi_{jr} V_{((s))}^{i} - \phi_{mr} \pi_{slj}^{i} V^{l} \dot{x}^{m} \right\} \dot{x}^{r} \right] \pi_{khm}^{s} + \\
 + Q_{jk}^{s} \phi_{hms} V^{l} - Q_{sk}^{i} \phi_{jhm} V^{s} + Q_{sj}^{i} \phi_{khm} V^{s} = 0.$$

Transvecting (3.7) by \dot{x}^h and using (1.3) a) we obtain

$$Q_{jk}^{s} \phi_{hms} V^{i} + (Q_{sj}^{i} \phi_{khm} - Q_{sk}^{i} \phi_{jhm}) V^{s} = 0.$$
 (3.8)

Thus we have:

Theorem 3.2. If a special projective symmetric Finsler space admits a special projective motion characterized by infinitesimal transformation (1.8), then equation (3.8) holds.

REFERENCES

[1] RUND, H. : The Differential Geometry of Finsler Spaces, Springer Verlag, Berlin, 1959.

[2] YANO, K. : The theory of Lie-derivatives and its application, North-Holland Publishing Co., Amsterdam, 1957.

[3] MISHRA, R.B. : The projective transformation in a Finsler Space, Ann. Soc. Sci. Bruxelles 80 (III) (1966), 227-239.

[4] SINGH, U.P. : Special curvature collineation in Finsler Space, Acad. Naz. dei Lincei, Rendiconti, Ser. VIII, 50 (2) (1971), PRASAD, B.N. 82-87, 122, 127.

[5] NICOLESCU, P.L. : Les Espaces de Riemann en Représentation subgéodésigne, Tensor, N.S., 32 (1978), 183-187.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GORAKHPUR GORAKHPUR-273001, (U.P.) INDIA

ÖZET

Bu çalışmada, $v^i(x)$ herhangi bir vektör alam ve dt bir infinitezimal sabit olmak üzere,

$$\vec{x}^i = x^i + v^i(x) dt$$

infinitezimal nokta transformasyonu gözönüne alınmakta, bir F_n Finsler uzayında özel eğrisel kolineasyonlar ve özel projektif hareketle ilgili bir takım teoremler elde edilmektedir.