İstanbul Üniv. Fen Fak. Mec. Seri A, **46-47 (1981-1982), 61-66 61**

W-THIRD ORDER RECURRENT FINSLER SPACE

H.D . PANDE Y - S.D. TRIPATH I

In this paper some results on the third order recurrent Finsler spaces have **been obtained.**

1. INTRODUCTION

Let an *n*-dimensional Finsler space F_h ^{[1}] be equipped with a positively homogeneous function $F(x, \dot{x})$ whose metric tensor $g_{ii}(x, \dot{x}) \stackrel{\text{def.}}{=} - \partial_i \partial_j F^2(x, \dot{x})$ is \overline{z}

by

$$
T_{j(h)}^i = \partial_h T_j^i - (\dot{\partial}_m T_j^i) G_h^m + T_j^k G_{kh}^i - T_k^i G_{jh}^k \left(\partial_i = \frac{\partial}{\partial x^i}, \dot{\partial}_i = \frac{\partial}{\partial \dot{x}^i} \right), (1.1)
$$

where $G^{i}(x, \dot{x})$ is positively homogeneous of degree two in its directional argument and given by

$$
G^{i}(x, \dot{x}) \stackrel{\text{def.}}{=} \frac{1}{4} g^{ih} \left\{ 2 \partial_{(j} g_{k)h} - \partial_{h} g_{jk} \right\} \dot{x}^{j} \dot{x}^{k} \quad (2 \; T_{(hk)} = T_{hk} + T_{kh}). \tag{1.1}
$$

 $\partial^2 \; G^i$ The $G'_{hk}(x, x)$ are Berwald's connection coefficients, given by $G_{jk} \cong \frac{1}{2k! \cdot 2k^k}$. *dx^dx^k*

The Berwald's curvature tensor $H_{jhk}^i(x, \dot{x})$, projective curvature tensor $W_{hk}^i(x, \dot{x})$ and projective deviation tensor $W_{ih}^i(x, \dot{x})$, $W_i^i(x, \dot{x})$ are given as follows :

$$
H_{jhk}^i(x, \dot{x}) = 2 \left\{ \partial_{lk} G_{hlj}^i - G_{rj[h}^i G_{kl}^r + G_{jlh}^r G_{klr}^i \right\} (2T_{lhk} = T_{hk} - T_{kh}), \quad (1.2)
$$

STETTY MARKED CONTROLLATION CONTROLLER

$$
W_{jhk}^i = H_{jhk}^i + \frac{\delta_j^i}{n+1} (H_{hk} - H_{kh}) + \frac{\dot{x}^i}{n+1} (\dot{\partial}_j H_{hk} - \dot{\partial}_j H_{kh}) + \frac{\delta_h^i}{n^2 - 1} (n H_{jk} + H_{kj} + \dot{x}^r \dot{\partial}_j H_{kr}) - \frac{\delta_k^i}{n^2 - 1} (n H_{jh} + H_{hj} + \dot{x}^r \dot{\partial}_j H_{hr}), \qquad (1.3)
$$

$$
W_j^i = H_j^i - H \, \delta_j^i - \frac{1}{n+1} \left(\dot{\partial}_m \, H_j^m - \dot{\partial}_j \, H \right) \dot{x}^i \tag{1.4}
$$

and

$$
W_{jh}^{i} = H_{jh}^{i} + \frac{\dot{x}^{i}}{n+1} (H_{hk} - H_{kh}) +
$$

+
$$
\frac{\delta_{j}^{i}}{n^{2}-1} (n H_{h} + \dot{x}^{r} H_{hr}) - \frac{\delta_{h}^{i}}{n^{2}-1} (n H_{j} + \dot{x}^{r} H_{jr}),
$$
 (1.5)

where δ_j^i are Kronecker delta.

The curvature tensor $H_{jhk}^i(x, \dot{x})$ satisfies the following identities:

$$
H_{jhk}^i + H_{hkj}^i + H_{kjh}^i = 0,
$$
\n(1.6)

$$
H_{\text{rjk}(I)}^i + H_{\text{rhl}(j)}^i + H_{\text{rlj}(k)}^i = 0 \tag{1.7}
$$

and

$$
H = \frac{1}{n-1} H_i^i. \tag{1.8}
$$

The followings are the commutation formulas for tensors of second order:

$$
T_{ij(ij)(k)} - T_{ij(ij)(j)} = \dot{\partial}_r T_{ij} H_{hk}^r - T_{rj} H_{hhk}^r - T_{lr} H_{jhk}^r, \qquad (1.9)
$$

$$
T_{(j)(h)(k)}^{l} - T_{(j)(k)(h)}^{l} = - \dot{\partial}_{m} T_{(j)}^{l} H_{hk}^{m} - T_{(m)}^{l} H_{jhk}^{m} + H_{mhk}^{l} T_{(j)}^{m}.
$$
 (1.10)

Recurrent Finsler space of first and second order for non-zero curvature tensor $W_{hkk}^i(x, \dot{x})$ are given by $[2,3]$

$$
W_{jhk(l)}^i = \lambda_l W_{jhk}^i, \qquad (1.11)
$$

$$
W_{jhk(1)(m)}^l = a_{lm} W_{jhk}^l \t\t(1.12)
$$

where λ_t is non-zero recurrence vector field and $a_{lm}(x, \dot{x})$ is recurrence tensor of order two.

W-THIRD ORDER RECURRENT FINSLER SPACE 63

2. RECURRENT PROJECTIVE CURVATURE

Definition 2.1. An *n*-dimensional Finsler space is said to be third order recurrent Finsler space if the projective curvature tensor field satisfies the relation

$$
W_{hjk(l)(m)(n)}^i = b_{lmn} W_{hjk}^i \t\t(2.1)
$$

where b_{lmn} is a non-zero recurrence tensor field of third order. We denote such space by *3RFⁿ .*

Theorem 2.1. The Wely's tensor fields W'_{jk} and W'_{k} are necessarily third order recurrent in $3RF_n$.

Proof. Transvecting (2.1) by \dot{x}^h and using $W_{jk}^i = W_{hjk}^i \dot{x}^h$, we get

$$
W_{jk(l) (m) (n)}^l = b_{lmn} W_{jk}^i , \qquad (2.2)
$$

where we have used the fact $\dot{x}^i_{(k)} = 0$.

In a similar way, from the above relation, we can deduce

$$
W_{k(l)(m)(n)}^{l} = b_{lmn} W_k^{l}.
$$
 (2.3)

From equations (2.2) and (2.3) we have the Theorem 2.1.

Theorem 2.2. In a $3RF_n$ the recurrence tensor field b_{lmn} satisfies the following identities :

$$
b_{\{lm\}_n} = a_{\{lm\}_n} + a_{\{lm\}} \lambda_n, \tag{2.4}
$$

$$
b_{\{lmln} = \lambda_{\{l(m)l\; (n)} + \lambda_{\{l(m)l\; \lambda_n + \lambda_{\{l \leq (n) \geq \lambda_m\}} + \lambda_{\{l\; \lambda_m\; (n)} \, ,\right.} \tag{2.5}
$$

where the indices in $\langle \rangle$ are free from symmetric and skew symmetric operations.

Proof. Differentiating (1.11) covariantly with respect to x^m and x^n in the sense of Berwald and remembering the definition (2.1), we get

$$
b_{lmn} = \lambda_{l(m)(n)} + \lambda_{l(m)} \lambda_n + \lambda_{l(n)} \lambda_m + \lambda_l \lambda_m \lambda_n + \lambda_l \lambda_{m(n)}.
$$
 (2.6)

Interchanging the indices *l, m* and substracting thus obtained equation from (2.6), we get (2.5).

The commutation formula (1.10) for projective curvature tensor W_{hjk}^i is given by

The Contract Constitution of Constitution Constitution

64 H.D . PANDE Y - S.D. TRIPATH I

$$
W_{hjk(l)(m)(n)}^{i} - W_{hjk(l)(n)(m)}^{i} = -\dot{\partial}_{p} W_{hjk(l)}^{i} H_{mn}^{p} + W_{hjk(l)}^{p} H_{pmn}^{i} - (2.7) - W_{hjk(l)}^{i} H_{mm}^{p} - W_{hjk(l)}^{i} H_{mm}^{p} - W_{hjk(l)}^{i} H_{mm}^{p}
$$

$$
- W_{hjk(l)}^{i} H_{kmn}^{p} - W_{hjk(p)}^{i} H_{lmn}^{p}.
$$

With the help of (1.11) , (1.12) and (1.9) , we get

$$
(b_{lmm} - b_{lmn}) = \lambda_l (a_{mn} - a_{nm}) - \dot{\partial}_p \lambda_l H^p_{mn} - \lambda_p H^p_{lmn}, \qquad (2.8)
$$

because the curvature tensor W_{hik}^i is non-zero.

Adding two more expressions obtained by the cyclic interchange of the indices l, m, n to (2.8) and using (1.6) , we have

$$
\{b_{l[mn]} - \lambda_{l} a_{lmn}\} + \{b_{m[n]} - \lambda_{in} a_{lnl}\} + \{b_{n[lm]} - \lambda_{n} a_{lml}\} +
$$

+
$$
\frac{1}{2} \{\dot{\partial}_{p} \lambda_{l} H^{p}_{mn} + \dot{\partial}_{p} \lambda_{m} H^{p}_{nl} + \dot{\partial}_{p} \lambda_{n} H^{p}_{lm}\} = 0.
$$
 (2.9)

If the recurrence vector λ_i is independent of directional argument the above relation (2.9) reduces to

$$
b_{\text{ftmnl}} - \lambda_t a_{\text{fmnl}} + b_{\text{mln/l}} - \lambda_t a_{\text{ta/l}} + b_{\text{ntiml}} - \lambda_n a_{\text{tml}} = 0. \qquad (2.10)
$$

Thus we have the following theorems:

Theorem 2.3. In $3RF_n$ the recurrence tensor b_{lmn} satisfies (2.9).

Theorem 2.4. In $3RF_n$, if the recurrence vector is independent of \dot{x}^i then (2.10) holds.

Theorem **2**.5. In *3RFⁿ* the Bianchi identity satisfied by the projective tensor field takes the form

$$
b_{lmn} W_{hk}^{j} + b_{hmn} W_{kl}^{j} + b_{kmn} W_{lh}^{j} =
$$

\n
$$
= \frac{\dot{x}^{j}}{n+1} \left\{ (H_{hk(l)(m)(n)} + H_{kl(l)(m)(n)} + H_{lh(k)(m)(n)} - (H_{kh(l)(m)(n)} + H_{lk(k)(m)(n)} + H_{hl(k)(n)(n)}) \right\} +
$$

\n
$$
+ \frac{\delta_{h}^{j}}{n^{2}-1} \left\{ n (H_{k(l)(m)(n)} - H_{l(k)(m)(n)}) + \right\}
$$

\n
$$
+ \dot{x}^{r} (H_{kt(l)(m)(n)} - H_{lt(k)(m)(n)}) \right\} +
$$

W-THIRD ORDER RECURRENT FINSLER SPACE 65

$$
+\frac{\delta_{k}^{j}}{n^{2}-1}\left\{n\left(H_{l(h)(m)(n)}-H_{h(l)(m)(n)}\right)+\right.
$$

$$
+\dot{x}^{r}\left(H_{lr(h)(m)(n)}-H_{hr(l)(m)(n)}\right)\right\} +
$$

$$
+\frac{\delta_{l}^{j}}{n^{2}-1}\left\{n\left(H_{h(k)(m)(n)}-H_{k(h)(m)(n)}\right)+\right.
$$

$$
+\dot{x}^{r}\left(H_{hr(k)(m)(n)}-H_{kr(h)(m)(n)}\right)\right\}.
$$
 (2.11)

Proof. Differentiating (1.5) covariantly with respect to x^l , we have

$$
W_{hk(l)}^j = H_{hk(l)}^j + \frac{\dot{x}^j}{n+1} \{H_{hk(l)} - H_{kh(l)}\} + \frac{\delta_h^j}{n^2 - 1} \{n H_{k(l)} + \dot{x}^r H_{kr(l)}\} - \frac{\delta_k^j}{n^2 - 1} \{n H_{h(l)} + \dot{x}^r H_{hr(l)}\}.
$$
 (2.12)

Adding the expressions obtained by the cyclic interchange of the indices *h, k, I* in (2.12), we obtain

$$
W_{hk(l)}^j + W_{hl(l)}^j + W_{lh(k)}^j = H_{hk(l)}^j + H_{kh(l)}^j + H_{lh(k)}^j + H_{lh(k)}^j + H_{lh(k)}^j + H_{lh(k)}^j - H_{hl(k)}^j + H_{hl(k)}^j + H_{lh(k)}^j - H_{lh(k)}^j + H_{hl(k)}^j + \frac{\delta_h^j}{n^2 - 1} \left\{ n H_{k(l)} - n H_{l(k)} + \dot{x}^r H_{hr(l)} - \dot{x}^r H_{hr(l)}^j + H_{hl(k)}^j - 1 \left\{ n H_{l(l)} - n H_{hl} + \dot{x}^r H_{hr(l)} - \dot{x}^r H_{hr(l)}^j \right\} + \frac{\delta_l^j}{n^2 - 1} \left\{ n H_{hl(k)} - n H_{kl(l)} + \dot{x}^r H_{hr(l)} - \dot{x}^r H_{hr(ll)}^j \right\}.
$$
\n(2.13)

Using (1.7) in (2.13) and differentiating covariantly with respect to x^m , x^n successively, we have

ה הכל היה היה היה היה היה המתפקד המתקיימה המתקדשות המתפקד הכל היה היה המתקדשות המתקדשות היה היה היה היה המתפקד

 $W^{j}_{hk(l)(m)(n)} + W^{j}_{kl(h)(m)(n)} + W^{j}_{lh(k)(m)(n)} =$

$$
= \frac{\dot{x}^j}{n+1} \left\{ H_{hk(j)}(m)(n) + H_{kl(j)}(m)(n) + H_{lh(k)}(m)(n) - H_{hl(k)(m)(n)} \right\} - H_{kh(j)}(m)(n) - H_{lk(k)(m)(n)} - H_{hl(k)(m)(n)} \right\} + + \frac{\delta_h^j}{n^2 - 1} \left\{ n \left(H_{k(j)}(m)(n) - H_{l(k)(m)(n)} \right) + \dot{x}^r \left(H_{kr(j)}(m)(n) - H_{lr(k)(m)(n)} \right) \right\} + + \frac{\delta_k^j}{n^2 - 1} \left\{ n \left(H_{l(h)(n)(n) - H_{hl(k)(m)(n)} \right) + \dot{x}^r \left(H_{lr(i)(m)(n) - H_{hr(l)(m)(n)} \right) \right\} + + \frac{\delta_l^j}{n^2 - 1} \left\{ n \left(H_{hl(k)(m)(n) - H_{kl(i)(m)(n)} \right) + \dot{x}^r \left(H_{hr(k)(m)(n) - H_{hr(l)(m)(n)} \right) \right\}.
$$
 (2.14)

Using (2.1) in (2.14) we get the required result.

REFERENCES

DEPARTMENT OF MATHEMATICS UNIVERSITY OF JABALPUR JABALPUR, INDIA

DEPARTMENT OF MATHEMATICS KISAN INTER COLLEGE BASTI, 272001 (U.P.), INDIA

ÖZET

Bu çalışmada, 3. mertebeden tekrarlı Finsler uzayları hakkında bazı sonuçlar elde edilmektedir.