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INDUCED R I E M A N N I A N METRICS ASSOCIATED W I T H T H E 
WRONA METRIC 

S. DRAGOMIR - A. FARINOLA 

The metric E induced on the unit circle S1 by the Wrona metric of 
IR* is shown to be Riemannian. The real projective line gets an induced 
Riemannian metric via the fibration Sl-*-IRPl; we determine the 
geodesies of (IRF1, E0\ derive the T„aplace-Beltrami operator (on functions) 
of E0 and compute its positive eigen-values. 

1. INTRODUCTION 

Let M be an n-dimensional C^-differentiable connected manifold. Denote 
by T (M) -> M the tangent bundle over M; let also j : M —> T (Af), 

j{x) = 0X G Tx (M), x e M, be the natural imbedding of M in T(M) as the 
zero-section. We put V(M) — T(M) — j(M)> and denote by %: V(M) —> M the 
natural projection. Then V(M) is open in T(M), and consequently is a 
2ra-dimensional C'-differentiable manifold in a natural way. Let D be a subset 
o f T(M) such that k > 0, u e D yields kueD. Then a Finslerian energy on 
M is a map E : D - > [0, + <*>") obeying the following axioms : 

i) E (w) = 0 i f f u e j(M), 

ii) E e (D -j{M)), E e C^D) (it is assumed that j(M) c D), 

iii) E(kü) • k2 E(ü), for any k> 0, u e D (i.e. E is positively 
homogeneous of degree 2) ; finally, iv) i f (U, x') are local coordinates on M 
and ( i t - 1 (If), x!, yl) are induced local coordinates on V(M) then, for any 

u e D n rc-1 (t0 one requests gu (u) = 6\ 3/ i to be a positive definite 

3 
quadratic form. Here 9 ( — — j . A copy ( M , is refered to as a Fimler space. 

Eversince the basis of Finsler geometry have been settled, cf. e.g. H . R U N D , 
[ 1 3 ] , there have been recognized various classes of Finsler spaces, such as locally 
Minkowski spaces, [ 7 , p.153], Berwald and Landsberg spaces, [ 7 , p.160], etc. 
These spaces are distinguished in that they are to satisfy certain tensor identities 
i n terms of their Cartan or Berwald connections, see [ 7 , p.108-115]. Yet few 
significant explicit examples of Finsler (non-Riemannian) metrics are available 



78 S. DRAGOMIR - A. PARINOLA 

in the existing literature. Among these we may mention Randers' metric, cf. 
[12]> [i0]> Berwald-Moofs metric, cf. [ 8 ] , etc.; both are only semi-definite and 
lead to applications in general relativity. Also we should cite K.Okubo's method, 
cf. [ 7, p.108], to produce Finsler metrics with a prescribed indicatrix. About 
fifty years ago, W.WRONA, cf. [ i 6 , p.281], has proposed the following Finsler 
metric in the real plane IR2 : The distance between two points P, Q of IRZ is 

PQ 
defined to be the number — ^ - where PQ, OS are Euclidean measures of length 

(JS 
and OS is the perpendicular from a fixed origin O in IR2 to the segment PQ. The 

PQ 
quantity -—-—• is to measure the "length" of the segment PQ as the direction 

OS 
of PQ varies, i.e. in a "Finslerian" way; clearly, any line passing through O has 
no length measure defined on it . The example of W.Wrona has been further gen­
eralized by S.HOJO, [% I n the present paper, i f L is the Wrona metric of IR2, 
we consider the metric induced by L on the standard unit circle S1; this appears 
to be Riemannian. Consequently the real projective line IRP1 gets a naturally 
induced (via the fibration S - > IR P1) Riemannian structure E0. A n explicit 
determination of the geodesies of (IR P1, E0) is performed. As an application of 
this we derive the Laplace-Beltrami operator associated with E0 , i.e. 

d2f + 2 . -n df (1.1) 
_ drf 1 - f vf d-q 

where TJ stands for the local coordinate on IR P1. As an attempt to compute 
Spec (IRP1 ,E0) we find : 

2n 7c ± a 
TZ 

e 
2 

« G Z (1.2) 

whenever % > 0, for some a > 0 , e > 0, i.e. one determines the positive 
eigen-values of (1.1). 

2. T H E INDUCED METRIC O N S 1 

Let S1 be the unit circle in IRZ; let (x, y) be cartesian coordinates 
on IR2 and (x, y, x, y) the induced coordinates on T(IR2) = IR4 . We set 
D — {(x, y, x , y) | x y — y x # 0} ; then IR2 carries the Finsler metric 
L : D - » [0, + w ) given by : 

x2 -4- i>2 

L (x, y, x, y) = . . , , (2.1) 
\x y — yx\ 

i.e. in the terminology of our § 1, E ~ L z is a Finsler energy on IR2. Then (2.1) 
is refered to as the Wrona metric of the plane. See [ l f i ] and [ 7 , p. 107]. 
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Generally, i f (M, E) is a Finsler space and \\r: N-± M an immersion of a 
given differentiate manifold N in M, then N carries an induced Finsler energy 

£ = £ 0 ^ , where denotes the differential of y . Thus N turns into a Finsler 
space itself, and it is an open problem to classify the immersions y for which 
E is Riemannian. I n order to compute L a , where i: S1 -»IR2 denotes the 
canonicalinclusion, we coverS 1 with the atlas {(U+

>h+)>(U'~j2~),(L+,h+),(U_yh_)}, 

where U+ = {(x, sJT^x2) j - 1 < x < 1}, D_ = {(x, \ / 1 - x2) | - 1 < x < 1}, 

U+= {(\/T^f,y)\-l <y< 1}, o _ = { ( - \ ^
r

7 " , j ' ) | - 1 < ^ < 1 } , 
while h+ : U+ - » /i?, h~ :U~-* IR, h+:U+~> IR and A_ : E7_ - > 7R are given 
by =^1^+ , A~ =^1(7" > K =Pz\u+ > A- = - P 2 | ( ; _ where / ) ; : / R 2 - W i ? 
stand for the natural projections. Let %, : T(IR2) -> IR2 be the natural projection. 
Then r+cs 1) = T t r 1 r - C T = mr 1 (u~)> = * r J 

TJ^S1) = i T 1

_ i (£/_) is an open cover of rfS1). Tangent vectors X on S 1 at 
(x, y) G S 1 are precisely those X e T(x,y) (IR2) with X(F) = 0, where 
F(x,y) = x z - j - j > 2 — 1 . Suppose (x, x ) G C / + ; then T ^ j f S 1 ) is spanned by 

x 3 ,y — \! 1—x2, —1 < x < l . Let {eA}i^A^ be the canonical 

_3_ linear basis of IR4. Let us identify — 
dx 

with e3 , e4 respectively. 

Therefore r+OS1) = x, \J 1 - x 2 , X , 7 = x)\ - l< x < l,Xe IR[ . 
(\ \ / l - x z J ) 

Set IR* = IR- {0}. We set V(S*) - TiS1) - 0. Let then % be the restriction of 
TEj to ^(S 1). Therefore F + ( 5 1 ) = 7 i ~ 1 (U+), K ^ S 1 ) ^ " 1 (CT), V+(Sl)^irl (U+), 
V-iS1) = K ' 1 (U_) are chart domains of an atlas of V(S1) as follows: We put 

H+ : F + O S 1 ) - * / ^ 2 , W x,\/ l ~ x 2 ,X, . * x) = (x,X),-l<x<l> 

\ \/l~x2 J 
XeIR*. Clearly V+iS1) = T+(Sl) fl D. Let E = L 2 be the energy function 
associated with the Lagrangian (2.1). Let E+ be the local expression of E\ 

X2 

with respect to the local chart (V+iS1), H+). Then E+(x, X) = . The read¬

er might establish, as an exercise, the similar expressions of E~ , E+ , E_ 
d2E+ 

(definitions are obvious). Note that is a function of positional arguments 
d X^ 

only, i.e. the metric induced by (2.1) on S1 is Riemannian. 
Let IR P1 be the real projective line. We cover IR P1 with the atlas 

{(Uj >¥/)}./=i,2 - Here Uj consists of all lines L g = {t'£> j t e IR*}, % e S1 , 

£, — (i1 , i ; 2 ) , V 0. Consider for instance \|/2

 : U2-*IRt \i2(L^) = — = n . 

Next we consider the fibration p : S1 IR P1 and denote by p the local expression 
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of p, i.e. p : ( - 1 , 1) - » 1 R , p - \|/2 op o . Note that />(x) = x (1 - x 2 ) " 1 ' 2 

and its Jacobian is given by dp/dx = (1 — x 2 ) ~ 3 / 2 . 

3. T H E INDUCED METRIC O N IR P1 

Let £ 0 e Sl , P0 = L ? 0 e IRPK I f S0 G U+ , £ 0 = ( x ^ i ^ * ! ) , let 
x : (— e, e) —> (— 1, 1) be a differ en tiable function, such that x (0) = x 0 . Then 

C : ( - e, s) U+ , C (t) = (x (/), \h~x(tf\\t\< is a curve in S1 with 
C(0) = - Therefore o : (— e, e) -> U2 , a( /) = i , c ( i ) , is a curve in IR P1 

with a (0) = P 0 . Next, we need to determine the tangent space TPo (IR p1). 
Let a (t) e U2, j /1 < s , s > 0, be a curve; let a = y 2 ° « be its local expression. 
Note that a(f) = x ( r ) ( l — x(t)2Y112, \1\ < e . Let C(x 0) be the space of all 
smooth functions x : (—s, e ) - » (—1, 1) with x (0) = x 0 . Then we obtain 

TP<i(IRP') = dx d — (0)(1 - x 2 ) " 3 ' 2 

dt 0 3r] 
C W . We set F i f f i P 1 ) ^ 

TtfRP1)—{0} and denote by p : V(IR P1)IR Pl the natural projection. Let 
( p " ' ( t / 2 ) , <t>2) be the local chart induced on V(IR P1) by (U2>\\r2), i.e. 
tj)2 : p~* (U2) —> ZR2 is given by 

a 
^ | - ( o ) ( i - < r 3 ' 2 

3*1 
Let be the local expression of the differential dp, i.e. the following 
diagram is commutative : 

V+(S1)— - • p " 1 ^ ) 

(x , X) G /J?2 

*2 

J P 

Note that dp (x, X) = (x [1 - x 2 r 1 / 2 , X [1 - x 2 ] " 3 ' 2 ) , j x | < 1 , X e IR*. Clearly 
dp is an isomorphism on the fibres; its inverse might be locally written : 

x = T) (1 + TIT1/2 , X = Ti (1 + i ) T 3 ' 2 • (3-1) 
We may consider the energy function : 

E£(T),ii) = E+(x,X) (3.2) 

where x,X are given by (3.1). Therefore IRP1 carries the Riemannian metric 
locally expressed by EQ (TJ , -fj) — if (1 + r j 2 ) - 2 . The associated metric tensor has 
the (local) component g+(ri) = (1 + n2)~2. Thus the (local) component of the 
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Levi-Civita connection of (IRP1 ,E0) might be computed from r + ( r ] ) = — - Y+Cn)> 
g+ 

1 d%+ 

where y+(T)) = — — — is the Christoffel symbol of the first kind; one obtains 

2 9TJ 

r + ( K ) ) = - 2 i t i ( H - i i 2 ) - 1 . 
A t this point we may find all the geodesies of (IR P1 , E0); the equation of 

d2a (da\z 

the geodesies reads —— + r+[«(£)] — 0 and this is equivalent to : 
dt2 \dtj 

d2x . x idx\2

 0 dt2 l - x 2 \ d t 

The initial conditions a (0) = P 0 , — (0) = X0 , X0 e p^ 1 (L^), £ 0 e C/+ , or 
d t 

a (0) = x 0 (1 - x2)-^ , (0) = XQ , where X0 = X0 ^~ 
0 dt dn 

, furnish : 

* (0 ) = x 0 , ^ ( 0 ) = X 0 ( l - x ^ . (3.4) 
d t u 

Integration of (3.3) with the initial data (3.4) leads to : 

x (t) = sin [X0(\ - xl) t + arcsin x0 ] , j t \ < s (3.5) 

for some e > 0. 

4. COMPUTING Spec (IR P 1 , E 0 ) 

Let M be a Riemannian manifold and A : Cm (M) -> C° (M) its Laplace-
Beltrami operator (on functions). Let x e M and / e C™ (M); let also 
{-^i}i£f&i D e a n orthonormal basis in Tx (M), where n = dim ( M ) . Next we 
consider the geodesies a{ , 1 i i ' i n, of Ai ' determined by the initial data 
(x, X;), respectively. We shall use the well known formula : 

n 

( A / ) ^ 2 [ / o a,] | • (4.1) 

(=1 

As a consequence of (4.1), the Laplace operator A : C" (IRP1)-* C™ (IRP1) 
associated with E0 is expressed by : 

( A / ) ( n ) ^ - ~ - [ / ° « 3 (4-2) 
dt1 ,&0 

where a is the geodesic of (IRP1,2?0) with the initial data (P0, X0). Since X0 must 
be a unit tangent vector (with respect to g+ (PJ) its component X 0 is expressed 
by X 0 — (1 — x 2 ) " 1 . Therefore, by (3.5), the geodesic a might be written: 
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q(t) = tan (t + t0) , \t\<& 

where t0 = arcsin xQ . Then (4.2) transforms into 

Af =~ [cos t0T4 

(4.3) 

^ + s i n ( 2 g f 
dt\ dr\ 

or, after some computation, one obtains the formula (1.1), for any fe C^ÇIRP1). 
Now the problem A / = Xf is equivalent to : 

2x X 

1 + X2 (1 + X 2 ) 2 

/ ( * ) = o. (4.4) 

Towards the self-adjoint form of (4.4) one substitutes t = arctan x, y(t) = f(x); 
this procedure yields : 

+ Xy 
dtz 

0 , \t\<—— e, £ > 0 . 
2 

(4.5) 

Finally, cf. e.g. the general solution of (4.5) is y(t) = ^ t + c2 i f X = 0, 

j>(r) = cx cos ( \ / £ f) + c2 sin ( \/X i ) i f A, > 0, and y ( 0 = c± ch ( \ / — X i ) + 

+ c2 sh ( \ / — X t) i f X. < 0, where cl , c2e IR. I f one assigns the boundary 

conditions y\ — — + £] — A, y | — — e] — B, then, provided for instance that 
\ 2 j \2 J 

X > 0, one obtains X = Xn, n e Z , where X„ is given by our (1.2) while 
A -\- B 

a = arccos k, k = ~ , cx # 0 , | A ] < 1 . 
2 c i 
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Ö Z E T 

Bu çalışmada, S1 birim dairesi üzerinde İR? nin Wrona metriği yar­
dımıyla oluşturulan E metriğinin, Rietnann metriği olduğu ispat edilmek­
tedir. 
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