İstanbul Üniv. Fen Fak. Mat. Der. 48 (1987-1989), 77-83

INDUCED RIEMANNIAN METRICS ASSOCIATED WITH THE WRONA METRIC

S. DRAGOMIR - A. FARINOLA

The metric E induced on the unit circle S^1 by the Wrona metric of IR^2 is shown to be Riemannian. The real projective line gets an induced Riemannian metric E_0 via the fibration $S^1 \rightarrow IRP^1$; we determine the geodesies of (IRP^1, E_0) , derive the Laplace-Beltrami operator (on functions) of E_0 and compute its positive eigen-values.

1. INTRODUCTION

Let M be an *n*-dimensional C^{∞} -differentiable connected manifold. Denote by $T(M) \to M$ the tangent bundle over M; let also $j: M \to T(M)$, $j(x) = 0_x \in T_x(M), x \in M$, be the natural imbedding of M in T(M) as the zero-section. We put V(M) = T(M) - j(M), and denote by $\pi: V(M) \to M$ the natural projection. Then V(M) is open in T(M), and consequently is a 2*n*-dimensional C^{∞} -differentiable manifold in a natural way. Let D be a subset of T(M) such that $k > 0, u \in D$ yields $k u \in D$. Then a *Finslerian energy* on M is a map $E: D \to [0, +\infty)$ obeying the following axioms:

i) E(u) = 0 iff $u \in j(M)$,

ii) $E \in C^{\infty}(D - j(M)), E \in C^{1}(D)$ (it is assumed that $j(M) \subset D$),

iii) $E(k u) = k^2 E(u)$, for any k > 0, $u \in D$ (i.e. E is positively homogeneous of degree 2); finally, iv) if (U, x^i) are local coordinates on M and $(\pi^{-1}(U), x^i, y^i)$ are induced local coordinates on V(M) then, for any $u \in D \cap \pi^{-1}(U)$ one requests $g_{ij}(u) = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j E$ to be a positive definite quadratic form. Here $\dot{\partial}_i = \frac{\partial}{\partial y^i}$. A copy (M, E) is referred to as a Finsler space.

Eversince the basis of Finsler geometry have been settled, cf. e.g. H.RUND, [¹³], there have been recognized various classes of Finsler spaces, such as locally Minkowski spaces, [⁷, p.153], Berwald and Landsberg spaces, [⁷, p.160], etc. These spaces are distinguished in that they are to satisfy certain tensor identities in terms of their Cartan or Berwald connections, see [⁷, p.108-115]. Yet few significant explicit examples of Finsler (non-Riemannian) metrics are available

S. DRAGOMIR - A. FARINOLA

in the existing literature. Among these we may mention Randers' metric, cf. [¹²], [¹⁰], Berwald-Moor's metric, cf. [⁸], etc.; both are only semi-definite and lead to applications in general relativity. Also we should cite K.Okubo's method, cf. [7, p.108], to produce Finsler metrics with a prescribed indicatrix. About fifty years ago, W.WRONA, cf. [16, p.281], has proposed the following Finsler metric in the real plane IR^2 : The distance between two points P, Q of IR^2 is defined to be the number $\frac{PQ}{QS}$ where PQ, OS are Euclidean measures of length and OS is the perpendicular from a fixed origin O in IR^2 to the segment PQ. The quantity $\frac{PQ}{QS}$ is to measure the "length" of the segment PQ as the direction of PQ varies, i.e. in a "Finslerian" way; clearly, any line passing through O has no length measure defined on it. The example of W.Wrona has been further generalized by S.HOJO, [6]. In the present paper, if L is the Wrona metric of IR^2 , we consider the metric induced by L on the standard unit circle S^1 ; this appears to be Riemannian. Consequently the real projective line $IR P^1$ gets a naturally induced (via the fibration $S \rightarrow IR P^{1}$) Riemannian structure E_{0} . An explicit determination of the geodesies of $(IR P^1, E_0)$ is performed. As an application of this we derive the Laplace-Beltrami operator associated with E_0 , i.e.

$$\Delta f = -(1+\eta^2)^2 \left[\frac{d^2 f}{d\eta^2} + 2 \frac{\eta}{1+\eta^2} \frac{df}{d\eta} \right]$$
(1.1)

where η stands for the local coordinate on IRP^1 . As an attempt to compute Spec (IRP^1, E_0) we find:

$$\lambda_n = \left[\frac{2n\pi \pm \alpha}{\frac{\pi}{2} - \varepsilon}\right]^2, \quad n \in \mathbb{Z}$$
(1.2)

whenever $\lambda > 0$, for some $\alpha > 0$, $\varepsilon > 0$, i.e. one determines the positive eigen-values of (1.1).

2. THE INDUCED METRIC ON S¹

Let S^1 be the unit circle in IR^2 ; let (x, y) be cartesian coordinates on IR^2 and (x, y, \dot{x}, \dot{y}) the induced coordinates on $T(IR^2) = IR^4$. We set $D = \{(x, y, \dot{x}, \dot{y}) | x \dot{y} - y \dot{x} \neq 0\}$; then IR^2 carries the Finsler metric $L: D \rightarrow [0, +\infty)$ given by:

$$L(x, y, \dot{x}, \dot{y}) = \frac{\dot{x}^2 + \dot{y}^2}{|x \dot{y} - y \dot{x}|},$$
(2.1)

i.e. in the terminology of our § 1, $E = L^2$ is a Finsler energy on IR^2 . Then (2.1) is referred to as the *Wrona metric* of the plane. See [¹⁶] and [⁷, p.107].

INDUCED RIEMANNIAN METRICS

Generally, if (M, \overline{E}) is a Finsler space and $\Psi: N \to M$ an immersion of a given differentiable manifold N in M, then N carries an *induced Finsler energy* $E = \overline{E} \circ \Psi_*$, where Ψ_* denotes the differential of Ψ . Thus N turns into a Finsler space itself, and it is an open problem to classify the immersions Ψ for which E is Riemannian. In order to compute $L \circ i_*$, where $i: S^1 \to IR^2$ denotes the canonical inclusion, we cover S^1 with the atlas $\{(U^+, h^+), (U^-, h^-), (L_+, h_+), (U_-, h_-)\}$, where $U^+ = \{(x, \sqrt{1-x^2}) \mid -1 < x < 1\}$, $U_- = \{(x, \sqrt{1-x^2}) \mid -1 < x < 1\}$, $U_+ = \{(\sqrt{1-y^2}, y) \mid -1 < y < 1\}$, $U_- = \{(-\sqrt{1-y^2}, y) \mid -1 < y < 1\}$, while $h_+: U^+ \to IR$, $h^-: U^- \to IR$, $h_+: U_+ \to IR$ and $h_-: U_- \to IR$ are given by $h^+ = p_1|_U^+$, $h^- = p_1|_{U^-}$, $h_+ = p_2|_{U_+}$, $h_- = p_2|_{U_-}$ where $p_i: IR^2 \to IR$ stand for the natural projections. Let $\pi_i: T(IR^2) \to IR^2$ be the natural projection. Then $T^+(S^1) = \pi_1^{-1}(U^+)$, $T^-(S^1) = \pi_1^{-1}(U^-)$, $T_+(S^1) = \pi_1^{-1}(U_+)$, $T_-(S^1) = \pi_1^{-1}(U^-)$, $T_+(S^1) = \pi_1^{-1}(U_+$

Therefore $T^+(S^1) = \left\{ \left(x, \sqrt{1-x^2}, \lambda, -\frac{x}{\sqrt{1-x^2}} \lambda \right) \mid -1 < x < 1, \lambda \in IR \right\}$. Set $IR^* = IR - \{0\}$. We set $V(S^1) = T(S^1) - 0$. Let then π be the restriction of π_1 to $V(S^1)$. Therefore $V^+(S^1) = \pi^{-1}(U^+)$, $V^-(S^1) = \pi^{-1}(U^-)$, $V_+(S^1) = \pi^{-1}(U_+)$, $V_-(S^1) = \pi^{-1}(U_-)$ are chart domains of an atlas of $V(S^1)$ as follows: We put H^+ : $V^+(S^1) \to IR^2$, $H^+\left(x, \sqrt{1-x^2}, \lambda, -\frac{x}{\sqrt{1-x^2}}\lambda\right) = (x, \lambda), -1 < x < 1$, $\lambda \in IR^*$. Clearly $V^+(S^1) = T^+(S^1) \cap D$. Let $E = L^2$ be the energy function associated with the Lagrangian (2.1). Let E^+ be the local expression of $E|_{V(S^1)}$ with respect to the local chart $(V^+(S^1), H^+)$. Then $E^+(x, \lambda) = \frac{\lambda^2}{1-x^2}$. The reader might establish, as an exercise, the similar expressions of E^- , E_+ , E_- (definitions are obvious). Note that $\frac{d^2E^+}{d\lambda^2}$ is a function of positional arguments only, i.e. the metric induced by (2.1) on S_1 is Riemannian.

Let $IR P^1$ be the real projective line. We cover $IR P^1$ with the atlas $\{(U_j, \psi_j)\}_{j=1,2}$. Here U_j consists of all lines $L_{\xi} = \{t\xi \mid t \in IR^*\}, \xi \in S^1, \xi = (\xi^1, \xi^2), \xi^j \neq 0$. Consider for instance $\psi_2 : U_2 \rightarrow IR, \psi_2(L_{\xi}) = \frac{\xi^1}{\xi^2} = \eta$. Next we consider the fibration $p: S^1 \rightarrow IR P^1$ and denote by p the local expression

79

S. DRAGOMIR - A. FARINOLA

of p, i.e. $\underline{p}: (-1, 1) \rightarrow IR$, $\underline{p} = \psi_2 \circ p \circ (h^+)^{-1}$. Note that $\underline{p}(x) = x(1-x^2)^{-1/2}$ and its Jacobian is given by $dp/dx = (1-x^2)^{-3/2}$.

3. THE INDUCED METRIC ON IR P¹

Let $\xi_0 \in S^1$, $P_0 = L_{\xi_0} \in IRP^1$. If $\xi_0 \in U^+$, $\xi_0 = \left(x_0, \sqrt{1-x_0^2}\right)$, let $x: (-\varepsilon, \varepsilon) \to (-1, 1)$ be a differentiable function, such that $x(0) = x_0$. Then $C: (-\varepsilon, \varepsilon) \to U^+$, $C(t) = (x(t), \sqrt{1-x(t)^2})$, $|t| < \varepsilon$, is a curve in S^1 with $C(0) = \xi_0$. Therefore $a: (-\varepsilon, \varepsilon) \to U_2$, $a(t) = L_{C(t)}$, is a curve in IRP^1 with $a(0) = P_0$. Next, we need to determine the tangent space $T_{P_0}(IRP^1)$. Let $a(t) \in U_2$, $|t| < \varepsilon$, $\varepsilon > 0$, be a curve; let $\underline{a} = \Psi_2 \circ a$ be its local expression. Note that $\underline{a}(t) = x(t)(1-x(t)^2)^{-1/2}$, $|t| < \varepsilon$. Let $C(x_0)$ be the space of all smooth functions $x: (-\varepsilon, \varepsilon) \to (-1, 1)$ with $x(0) = x_0$. Then we obtain $T_{P_0}(IRP^1) = \left\{\frac{dx}{dt}(0)(1-x_0^2)^{-3/2}\frac{\partial}{\partial r_1}\Big|_{P_0}; x \in C(x_0)\right\}$. We set $V(IRP^1) = T(IRP^1) - \{0\}$ and denote by $p: V(IRP^1) \to IRP^1$ the natural projection. Let $(p^{-1}(U_2), \phi_2)$ be the local chart induced on $V(IRP^1)$ by (U_2, ψ_2) , i.e. $\phi_2: p^{-1}(U_2) \to IR^2$ is given by

$$\phi_2\left(\frac{dx}{dt}(0)\left(1-x_0^2\right)^{-3/2}\frac{\partial}{\partial\eta}\Big|_{P_0}\right) = \left(x_0\left(1-x_0^2\right)^{-1/2}, \frac{dx}{dt}(0)\left(1-x_0^2\right)^{-3/2}\right) = (\eta, \dot{\eta}).$$

Let dp be the local expression of the differential dp, i.e. the following diagram is commutative :

Note that $dp(x, \lambda) = (x [1 - x^2]^{-1/2}, \lambda [1 - x^2]^{-3/2}), |x| < 1, \lambda \in IR^*$. Clearly dp is an isomorphism on the fibres; its inverse might be locally written:

$$x = \eta (1 + \eta^2)^{-1/2}, \ \lambda = \dot{\eta} (1 + \eta^2)^{-3/2}.$$
 (3.1)

We may consider the energy function :

$$E_0^+(\eta, \dot{\eta}) = E^+(x, \lambda) \tag{3.2}$$

where x, λ are given by (3.1). Therefore IRP^1 carries the Riemannian metric locally expressed by $E_0^+(\eta, \dot{\eta}) = \dot{\eta}^2 (1 + \eta^2)^{-2}$. The associated metric tensor has the (local) component $g^+(\eta) = (1 + \eta^2)^{-2}$. Thus the (local) component of the

INDUCED RIEMANNIAN METRICS

Levi-Civita connection of (IRP^1, E_0) might be computed from $\Gamma^+(\eta) = \frac{1}{g^+} \gamma^+(\eta)$,

where $\gamma^+(\eta) = \frac{1}{2} \frac{\partial g^+}{\partial \eta}$ is the Christoffel symbol of the first kind; one obtains $\Gamma^+(\eta) = -2\eta (1+\eta^2)^{-1}$.

At this point we may find all the geodesics of $(IR P^1, E_0)$; the equation of the geodesics reads $\frac{d^2 a}{d t^2} + \Gamma^+[\underline{a}(t)] \left(\frac{d a}{d t}\right)^2 = 0$ and this is equivalent to:

$$\frac{d^2x}{dt^2} + \frac{x}{1-x^2} \left(\frac{dx}{dt}\right)^2 = 0.$$
 (3.3)

The initial conditions $a(0) = P_0$, $\frac{da}{dt}(0) = X_0$, $X_0 \in p^{-1}(L_{\xi_0})$, $\xi_0 \in U^+$, or

$$\underline{a}(0) = x_0 \left(1 - x_0^2\right)^{-1/2}, \frac{d \, \underline{a}}{d \, t}(0) = X_0, \text{ where } X_0 = \underline{X}_0 \left. \frac{\partial}{\partial \, \eta} \right|_{P_0}, \text{ furnish}:$$

$$x(0) = x_0, \quad \frac{dx}{dt}(0) = \underline{X}_0 (1 - x_0^2)^{3/2}.$$
 (3.4)

Integration of (3.3) with the initial data (3.4) leads to :

$$x(t) = \sin \left[\underline{X}_0 \left(1 - x_0^2\right) t + \arcsin x_0\right], \quad |t| < \varepsilon \tag{3.5}$$

for some $\varepsilon > 0$.

4. COMPUTING Spec $(IR P^1, E_0)$

Let M be a Riemannian manifold and $\Delta : C^{\infty}(M) \to C^{\infty}(M)$ its Laplace-Beltrami operator (on functions). Let $x \in M$ and $f \in C^{\infty}(M)$; let also $\{X_i\}_{1 \leq i \leq n}$ be an orthonormal basis in $T_x(M)$, where $n = \dim(M)$. Next we consider the geodesies a_i , $1 \leq i \leq n$, of M determined by the initial data (x, X_i) , respectively. We shall use the well known formula:

$$(\Delta f)(x) = -\sum_{i=1}^{n} \frac{d^2}{dt^2} [f \circ a_i]|_{t=0}.$$
(4.1)

As a consequence of (4.1), the Laplace operator $\Delta : C^{\infty}(IRP^{1}) \rightarrow C^{\infty}(IRP^{1})$ associated with E_{0} is expressed by:

$$(\Delta f)(P_0) = -\frac{d^2}{dt^2} [f \circ a] \Big|_{t=0}$$
(4.2)

where a is the geodesic of (IRP^1, E_0) with the initial data (P_0, X_0) . Since X_0 must be a unit tangent vector (with respect to $g^+(P_0)$) its component \underline{X}_0 is expressed by $\underline{X}_0 = (1 - x_0^2)^{-1}$. Therefore, by (3.5), the geodesic *a* might be written:

81

299974 - Many Control Manager and Albert and A

S. DRAGOMIR - A. FARINOLA

$$\underline{a}(t) = \tan\left(t + t_0\right), \ \left|t\right| < \varepsilon \tag{4.3}$$

where $t_0 = \arcsin x_0$. Then (4.2) transforms into

$$\Delta f = -\left[\cos t_0\right]^{-4} \left[\frac{d^2 f}{d\eta^2} + \sin\left(2 t_0\right) \frac{df}{d\eta}\right],$$

or, after some computation, one obtains the formula (1.1), for any $f \in C^{\infty}(IRP^{1})$. Now the problem $\Delta f = \lambda f$ is equivalent to :

$$f''(x) + \frac{2x}{1+x^2}f'(x) + \frac{\lambda}{(1+x^2)^2}f(x) = 0.$$
 (4.4)

Towards the self-adjoint form of (4.4) one substitutes $t = \arctan x$, y(t) = f(x); this procedure yields :

$$\frac{d^2 y}{dt^2} + \lambda y = 0, \quad |t| < \frac{\pi}{2} - \varepsilon, \quad \varepsilon > 0.$$
(4.5)

Finally, cf. e.g. [¹¹], the general solution of (4.5) is $y(t) = c_1 t + c_2$ if $\lambda = 0$, $y(t) = c_1 \cos(\sqrt{\lambda} t) + c_2 \sin(\sqrt{\lambda} t)$ if $\lambda > 0$, and $y(t) = c_1 ch(\sqrt{-\lambda} t) + c_2 sh(\sqrt{-\lambda} t)$ if $\lambda < 0$, where $c_1, c_2 \in IR$. If one assigns the boundary conditions $y\left(-\frac{\pi}{2} + \varepsilon\right) = A$, $y\left(\frac{\pi}{2} - \varepsilon\right) = B$, then, provided for instance that $\lambda > 0$, one obtains $\lambda = \lambda_n$, $n \in \mathbb{Z}$, where λ_n is given by our (1.2) while $\alpha = \arccos k, \ k = \frac{A+B}{2c_1}, \ c_1 \neq 0, \ |k| < 1$.

BIBLIOGRAPHY

[1]	AKBAR-ZADEH, H.	:	Les espaces de Finsler et certaines de leurs généra- lisations, Ann. Sci. Ecole Norm. Sup. (3) 80 (1963), 1-79.
[²]	DRAGOMIR, S.	:	On Finsler manifolds with complete horizontal leaves, Seminarberichte, Fachbereich Mathematik und Infor- matik, 25 (1986), 39-55.
[*]	DRAGOMIR, S.	:	Submanifolds of Finsler spaces, Conferenze del Se- minario di Matem. dell'Univ. di Bari 217 (1986), 1-15.
[4]	DRAGOMIR, S. and IANUS, S.	:	On the holomorphic sectional curvature of Kaehlerian Finsler spaces, I-II, Tensor, N.S. 39 (1982), 95-98, Rendiconti di Matem. (4) 3 (1983), 757-763.
[⁵]	GRIFONE, J.	:	Structure presque tangente et connexions, I-II, Ann. Inst. Fourier (1) 22 (1972), 287-334.
[ª]	HOJO, S.	:	On geodesics of certain Finsler metrics, Tensor, N.S. 34 (1980). 211-217.

INDUCED RIEMANNIAN METRICS

["]	MATSUMOTO, M.	:	Foundations of Finster geometry and special Finsler spaces, Kasheisha Press, Kyoto, 1986.
[8]	MATSUMOTO, M. and SHIMADA, H.	1	On Finsler spaces with 1-form metric, II. Berwald- Moor's metric $L = (y^1 y^2 \dots y^n)^{1/n}$, Tensor, N.S. 32 (1978), 275-278.
[°]	MISHRA, R.S. and PANDE, H.D.	:	Conformai identities, Ist. Üniv. Fen Fak. Mec. Seri A, 31 (1966), 39-48.
[*•]	NUMATA, S.	:	On the torsion tensors R_{hjk} and P_{hjk} of Finsler spaces with a metric $ds = (g_{ij} (dx) dx^i dx^j)^{1/2} + b_i(x) dx^i$, Tensor, N.S. 32 (1978), 27-31.
[11]	RABENSTEIN, A.L.	:	Introduction to ordinary differential equations, Acad. Press, New York, 1972.
["2]	RANDERS, G.	:	On an asymmetric metric in the four-space of general relativity, Phys. Rev., (2) 59 (1941), 195-199.
[¹⁸]	RUND, H.	:	The differential geometry of Finsler spaces, Springer Verlag, Berlin, 1959.
[**]	SHIBATA, C.	:	On Finsler spaces with Kroplna metric, Rep. Math. Phys., 13 (1978), 117-128.
[¹⁵]	SHIMADA, H.	:	On Finsler spaces with the metric $L = {}^{m} \sqrt{a_{i_1 \ i_2 \ \cdots \ i_m}(x)} y^{i_1} y^{i_2} \ \cdots \ y^{i_m},$ Tensor, N.S. 33 (1979), 365-372.
[16]	WRONA, W.	:	Neues Beispiel einer Finslerschen Geometrie, Prace Mat. Fiz., 46 (1938), 281-290.

UNIVERSITA DEGLI STUDI DI BARI DIPARTIMENTO DI MATEMATICA VIA G.FORTUNATO, CAMPUS UNIVERSITARIO 70125 BARI, ITALY

ÖZET

Bu çalışmada, S^1 birim dairesi üzerinde IR^2 nin Wrona metriği yardımıyla oluşturulan E metriğinin, Riemann metriği olduğu ispat edilmektedir.

83