INDUCED RIEMANNIAN METRICS ASSOCIATED WITH THE WRONA METRIC

S. DRAGOMIR - A. FARINOLA

Abstract

The metric E induced on the unit circle S^{1} by the Wrona metric of $I R^{2}$ is shown to be Riemannian. The real projective line gets an induced Riemamian metric E_{0} via the fibration $S^{\natural} \rightarrow I R P^{1}$; we determine the geodesies of (IR P^{1}, E_{0}), derive the Laplace-Beltrami operator (on functions) of E_{0} and compute its positive eigen-values.

1. INTRODUCTION

Let M be an n-dimensional C^{∞}-differentiable connected manifold. Denote by $T(M) \rightarrow M$ the tangent bundle over M; let also $j: M \rightarrow T(M)$, $j(x)=0_{x} \in T_{x}(M), x \in M$, be the natural imbedding of M in $T(M)$ as the zero-section. We put $V(M)=T(M)-j(M)$, and denote by $\pi: V(M) \rightarrow M$ the natural projection. Then $V(M)$ is open in $T(M)$, and consequently is a $2 n$-dimensional C^{∞}-differentiable manifold in a natural way. Let D be a subset of $T(M)$ such that $k>0, u \in D$ yields $k u \in D$. Then a Finslerian energy on M is a map $E: D \rightarrow[0,+\infty)$ obeying the following axioms :
i) $E(u)=0$ iff $u \in j(M)$,
ii) $E \in C^{\infty}\left(D-j(M)\right.$), $E \in C^{1}(D)$ (it is assumed that $j(M) \subset D$),
iii) $E(k u)=k^{2} E(u)$, for any $k>0, u \in D$ (i.e. E is positively homogeneous of degree 2) ; finally, iv) if (U, x^{i}) are local coordinates on M and $\left(\pi^{-1}(U), x^{i}, y^{i}\right)$ are induced local coordinates on $V(M)$ then, for any $u \in D \cap \pi^{-1}(U)$ one requests $g_{i j}(u)=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} E$ to be a positive definite quadratic form. Here $\dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$. A copy (M, E) is refered to as a Finsler space.

Eversince the basis of Finsler geometry have been settled, cf. e.g. H.RUND, [${ }^{13}$], there have been recognized various classes of Finsler spaces, such as locally Minkowski spaces, [${ }^{7}$, p.153], Berwald and Landsberg spaces, [${ }^{7}$, p.160], etc. These spaces are distinguished in that they are to satisfy certain tensor identities in terms of their Cartan or Berwald connections, see [${ }^{7}$, p.108-115]. Yet few significant explicit examples of Finsler (non-Riemannian) metrics are available
in the existing literature. Among these we may mention Randers' metric, cf. [$\left.{ }^{12}\right],\left[{ }^{10}\right]$, Berwald-Moor's metric, cf. [8], etc.; both are only semi-definite and lead to applications in general relativity. Also we should cite K.Okubo's method, cf. [$\left.{ }^{7}, \mathrm{p} .108\right]$, to produce Finsler metrics with a prescribed indicatrix. About fifty years ago, W.WRONA, cf. [${ }^{16}$, p.281], has proposed the following Finsler metric in the real plane $I R^{2}$: The distance between two points P, Q of $I R^{2}$ is defined to be the number $\frac{P Q}{O S}$ where $P Q, O S$ are Euclidean measures of length and $O S$ is the perpendicular from a fixed origin O in $I R^{2}$ to the segment $P Q$. The quantity $\frac{P Q}{O S}$ is to measure the "length" of the segment $P Q$ as the direction of $P Q$ varies, i.e. in a "Finslerian" way; clearly, any line passing through O has no length measure defined on it. The example of W.Wrona has been further generalized by S.HOJO, [${ }^{6}$]. In the present paper, if L is the Wrona metric of $I R^{2}$, we consider the metric induced by L on the standard unit circle S^{1}; this appears to be Riemannian. Consequently the real projective line $I R P^{1}$ gets a naturally induced (via the fibration $S \rightarrow I R P^{1}$) Riemannian structure E_{0}. An explicit determination of the geodesies of (IR P^{1}, E_{0}) is performed. As an application of this we derive the Laplace-Beltrami operator associated with E_{0}, i.e.

$$
\begin{equation*}
\Delta f=-\left(1+\eta^{2}\right)^{2}\left[\frac{d^{2} f}{d \eta^{2}}+2 \frac{\eta}{1+\eta^{2}} \frac{d f}{d \eta}\right] \tag{1.1}
\end{equation*}
$$

where η stands for the local coordinate on $I R P^{1}$. As an attempt to compute Spec (IR P^{1}, E_{0}) we find:

$$
\begin{equation*}
\lambda_{n}=\left[\frac{2 n \pi \pm \alpha}{\frac{\pi}{2}-\varepsilon}\right]^{2}, n \in \mathbf{Z} \tag{1.2}
\end{equation*}
$$

whenever $\lambda>0$, for some $\alpha>0, \varepsilon>0$, i.e. one determines the positive eigen-values of (1.1).

2. THE INDUCED METRIC ON \mathbf{S}^{1}

Let S^{1} be the unit circle in $I R^{2}$; let (x, y) be cartesian coordinates on $I R^{2}$ and (x, y, \dot{x}, \dot{y}) the induced coordinates on $T\left(I R^{2}\right)=I R^{4}$. We set $D=\{(x, y, \dot{x}, \dot{y}) \mid x \dot{y}-y \dot{x} \neq 0\}$; then $I R^{2}$ carries the Finsler metric $L: D \rightarrow[0,+\infty)$ given by:

$$
\begin{equation*}
L(x, y, \dot{x}, \dot{y})=\frac{\dot{x}^{2}+\dot{y}^{2}}{|x \dot{y}-y \dot{x}|}, \tag{2.1}
\end{equation*}
$$

i.e. in the terminology of our $\S 1, E=L^{2}$ is a Finsler energy on $I R^{2}$. Then (2.1) is refered to as the Wrona metric of the plane. See [${ }^{16}$] and [$\left.{ }^{7}, \mathrm{p} .107\right]$.

Generally, if (M, \bar{E}) is a Finsler space and $\psi: N \rightarrow M$ an immersion of a given differentiable manifold N in M, then N carries an induced Finsler energy $\boldsymbol{E}=\bar{E}_{\circ} \psi_{*}$, where ψ_{*} denotes the differential of ψ. Thus N turns into a Finsler space itself, and it is an open problem to classify the immersions ψ for which E is Riemannian. In order to compute $L \circ i_{*}$, where $i: S^{1} \rightarrow I R^{2}$ denotes the canonical inclusion, we cover S^{1} with the atlas $\left\{\left(U^{+}, h^{+}\right),\left(U^{-}, h^{-}\right),\left(L_{+}, h_{+}\right),\left(U_{-}, h_{-}\right)\right\}$, where $U^{+}=\left\{\left(x, \sqrt{1-x^{2}}\right) \mid-1<x<1\right\}, U_{-}=\left\{\left(x, \sqrt{1-x^{2}}\right) \mid-1<x<1\right\}$, $U_{+}=\left\{\left(\sqrt{1-y^{2}}, y\right) \mid-1<y<1\right\}, U_{-}=\left\{\left(-\sqrt{1-y^{2}}, y\right) \mid-1<y<1\right\}$, while $h_{+}: U^{+} \rightarrow I R, h^{-}: U^{-} \rightarrow I R, h_{+}: U_{+} \rightarrow I R$ and $h_{-}: U_{-} \rightarrow I R$ are given by $h^{+}=\left.p_{1}\right|_{U^{+}}, h^{-}=\left.p_{1}\right|_{U^{-}}, h_{+}=\left.p_{2}\right|_{U_{+}}, h_{-}=\left.p_{2}\right|_{U_{-}}$where $p_{i}: I R^{2} \rightarrow I R$ stand for the natural projections. Let $\pi_{\mathrm{t}}: T\left(I R^{2}\right) \rightarrow I R^{2}$ be the natural projection. Then $T^{+}\left(S^{1}\right)=\pi_{1}^{-1}\left(U^{+}\right), \quad T^{-}\left(S^{1}\right)=\pi_{1}^{-1}\left(U^{-}\right), \quad T_{+}\left(S^{1}\right)=\pi_{1}^{-1}\left(U_{+}\right)$, $T_{-}\left(S^{1}\right)=\pi_{1}^{-1}\left(U_{-}\right)$is an open cover of $T\left(S^{1}\right)$. Tangent vectors X on S^{1} at $(x, y) \in S^{1}$ are precisely those $X \in T_{i x, y)}\left(I R^{2}\right)$ with $X(F)=0$, where $F(x, y) \equiv x^{2}+y^{2}-1$. Suppose $(x, y) \in U^{+}$; then $T_{(x, y)}\left(S^{1}\right)$ is spanned by $\left.\frac{\partial}{\partial x}\right|_{(x, y)}-\left.\frac{x}{y} \frac{\partial}{\partial y}\right|_{(x, y)}, y=\sqrt{1-x^{2}},-1<x<1$. Let $\left\{e_{A}\right\}_{1 \leqq A \leqq 4}$ be the canonical linear basis of $I R^{4}$. Let us identify $\left.\frac{\partial}{\partial x}\right|_{(x, y)},\left.\frac{\partial}{\partial y}\right|_{(x, y)}$ with e_{3}, e_{4} respectively. Therefore $T^{+}\left(S^{1}\right)=\left\{\left.\left(x, \sqrt{1-x^{2}}, \lambda,-\frac{x}{\sqrt{1-x^{2}}} \lambda\right) \right\rvert\,-1<x<1, \lambda \in I R\right\}$. Set $I R^{*}=I R-\{0\}$. We set $V\left(S^{1}\right)=T\left(S^{1}\right)-0$. Let then π be the restriction of π_{1} to $V\left(S^{1}\right)$. Therefore $V^{+}\left(S^{1}\right)=\pi^{-1}\left(U^{+}\right), V^{-}\left(S^{1}\right)=\pi^{-1}\left(U^{-}\right), V_{+}\left(S^{1}\right)=\pi^{-1}\left(U_{+}\right)$, $V_{-}\left(S^{1}\right)=\pi^{-1}\left(U_{-}\right)$are chart domains of an atlas of $V\left(S^{1}\right)$ as follows: We put $H^{+}: V^{+}\left(S^{1}\right) \rightarrow I R^{2}, H^{+}\left(x, \sqrt{1-x^{2}}, \lambda,-\frac{x}{\sqrt{1-x^{2}}} \lambda\right)=(x, \lambda),-1<x<1$, $\lambda \in I R^{*}$. Clearly $V^{+}\left(S^{1}\right)=T^{+}\left(S^{1}\right) \cap D$. Let $E=L^{2}$ be the energy function associated with the Lagrangian (2.1). Let E^{+}be the local expression of $\left.E\right|_{\nu\left(S^{1}\right)}$ with respect to the local chart $\left(V^{+}\left(S^{1}\right), H^{+}\right)$. Then $E^{+}(x, \lambda)=\frac{\lambda^{2}}{1-x^{2}}$. The reader might establish, as an exercise, the similar expressions of E^{-}, E_{+}, E_{-} (definitions are obvious). Note that $\frac{d^{2} E^{+}}{d \lambda^{2}}$ is a function of positional arguments only, i.e. the metric induced by (2.1) on S_{1} is Riemannian.

Let $I R P^{1}$ be the real projective line. We cover $I R P^{1}$ with the atlas $\left\{\left(U_{j}, \psi_{j}\right)\right\}_{=1,2}$. Here U_{j} consists of all lines $L_{\xi}=\left\{t \xi \mid t \in I R^{*}\right\}, \xi \in S^{1}$, $\xi=\left(\xi^{1}, \xi^{2}\right), \xi^{j} \neq 0$. Consider for instance $\psi_{2}: U_{2} \rightarrow I R, \psi_{2}\left(L_{\xi}\right)=\frac{\xi^{1}}{\xi^{2}}=\eta$. Next we consider the fibration $p: S^{1} \rightarrow I R P^{1}$ and denote by \underline{p} the local expression
of p, i.e. $\underline{p}:(-1,1) \rightarrow I R, \underline{p}=\psi_{2}{ }^{\circ} p^{\circ}\left(h^{+}\right)^{-1}$. Note that $\underline{p}(x)=x\left(1-x^{2}\right)^{-1 / 2}$ and its Jacobian is given by $d \underline{p} / d x=\left(1-x^{2}\right)^{-3 / 2}$.

3. THE INDUCED METRIC ON IR P^{1}

Let $\xi_{0} \in S^{1}, P_{0}=L_{\xi_{0}} \in I R P^{1}$. If $\xi_{0} \in U^{+}, \xi_{0}=\left(x_{0}, \sqrt{1-x_{0}^{2}}\right)$, let $x:(-\varepsilon, \varepsilon) \rightarrow(-1,1)$ be a differentiable function, such that $x(0)=x_{0}$. Then $C:(-\varepsilon, \varepsilon) \rightarrow U^{+}, C(t)=\left(x(t), \sqrt{1-x(t)^{2}}\right),|t|<\varepsilon$, is a curve in S^{1} with $C(0)=\xi_{0}$. Therefore $a:(-\varepsilon, \varepsilon) \rightarrow U_{2}, a(t)=L_{C(t)}$, is a curve in IR P^{1} with $a(0)=P_{0}$. Next, we need to determine the tangent space $T_{P_{0}}\left(I R p^{1}\right)$. Let $a(t) \in U_{2},|t|<\varepsilon, \varepsilon>0$, be a curve; let $\underset{\sim}{a}=\psi_{2} \circ a$ be its local expression. Note that $\underline{a}(t)=x(t)\left(1-x(t)^{2}\right)^{-1 / 2},|t|<\varepsilon$. Let $C\left(x_{0}\right)$ be the space of all smooth functions $x:(-\varepsilon, \varepsilon) \rightarrow(-1,1)$ with $x(0)=x_{0}$. Then we obtain $T_{P_{0}}\left(I R P^{1}\right)=\left\{\left.\frac{d x}{d t}(0)\left(1-x_{0}^{2}\right)^{-3 / 2} \frac{\partial}{\partial \mathrm{r}_{!}}\right|_{P_{0}} ; x \in C\left(x_{0}\right)\right\}$. We set $\quad V\left(I R P^{1}\right)=$ $T\left(I R P^{1}\right)-\{0\}$ and denote by $\mathrm{p}: V\left(I R P^{1}\right) \rightarrow I R P^{1}$ the natural projection. Let ($\left.\mathrm{p}^{-1}\left(U_{2}\right), \phi_{2}\right)$ be the local chart induced on $V\left(I R P^{1}\right)$ by $\left(U_{2}, \psi_{2}\right)$, i.e. $\phi_{2}: \mathrm{p}^{-1}\left(U_{2}\right) \rightarrow I R^{2}$ is given by

$$
\phi_{2}\left(\left.\frac{d x}{d t}(0)\left(1-x_{0}^{2}\right)^{-3 / 2} \frac{\partial}{\partial \eta}\right|_{P_{0}}\right)=\left(x_{0}\left(1-x_{0}^{2}\right)^{-1 / 2}, \frac{d x}{d t}(0)\left(1-x_{0}^{2}\right)^{-3 / 2}\right)=(\eta, \dot{\eta})
$$

Let $d p$ be the local expression of the differential $d p$, i.e. the following diagram is commutative :

Note that $\underline{d p}(x, \lambda)=\left(x\left[1-x^{2}\right]^{-1 / 2}, \lambda\left[1-x^{2}\right]^{-3 / 2}\right),|x|<1, \lambda \in I R^{*}$. Clearly $d p$ is an isomorphism on the fibres; its inverse might be locally written :

$$
\begin{equation*}
x=\eta\left(1+\eta^{2}\right)^{-1 / 2}, \quad \lambda=\dot{\eta}\left(1+\eta^{2}\right)^{-3 / 2} . \tag{3.1}
\end{equation*}
$$

We may consider the energy function :

$$
\begin{equation*}
E_{0}^{+}(\eta, \dot{\eta})=E^{+}(x, \lambda) \tag{3.2}
\end{equation*}
$$

where x, λ are given by (3.1). Therefore IR P^{1} carries the Riemannian metric locally expressed by $E_{0}^{+}(\eta, \dot{\eta})=\dot{\eta}^{2}\left(1+\eta^{2}\right)^{-2}$. The associated metric tensor has the (local) component $g^{+}(\eta)=\left(1+\eta^{2}\right)^{-2}$. Thus the (local) component of the

Levi-Civita connection of (IR $\left.P^{1}, E_{0}\right)$ might be computed from $\Gamma^{+}(\eta)=\frac{1}{g^{+}} \gamma^{+}(\eta)$, where $\gamma^{+}(\eta)=\frac{1}{2} \frac{\partial g^{+}}{\partial \eta}$ is the Christoffel symbol of the first kind; one obtains $\Gamma^{+}(\eta)=-2 \eta\left(1+\eta^{2}\right)^{-1}$.

At this point we may find all the geodesics of (IR P^{1}, E_{0}); the equation of the geodesics reads $\frac{d^{2} \underline{a}}{d t^{2}}+\Gamma^{+}[\underline{a}(t)]\left(\frac{d \underline{a}}{d t}\right)^{2}=0$ and this is equivalent to :

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{x}{1-x^{2}}\left(\frac{d x}{d t}\right)^{2}=0 \tag{3.3}
\end{equation*}
$$

The initial conditions $a(0)=P_{0}, \frac{d a}{d t}(0)=X_{0}, X_{0} \in \mathrm{p}^{-1}\left(L_{\xi_{0}}\right), \xi_{0} \in U^{+}$, or $\underline{a}(0)=x_{0}\left(1-x_{0}^{2}\right)^{-1 / 2}, \frac{d \underline{a}}{d t}(0)=X_{0}$, where $X_{0}=\left.\underline{X}_{0} \frac{\partial}{\partial \eta}\right|_{P_{0}}$, furnish :

$$
\begin{equation*}
x(0)=x_{0}, \frac{d x}{d t}(0)=\underline{X}_{0}\left(1-x_{0}^{2}\right)^{3 / 2} \tag{3.4}
\end{equation*}
$$

Integration of (3.3) with the initial data (3.4) leads to:

$$
\begin{equation*}
x(t)=\sin \left[\underline{X}_{0}\left(1-x_{0}^{2}\right) t+\arcsin x_{0}\right],|t|<\varepsilon \tag{3.5}
\end{equation*}
$$

for some $\varepsilon>0$.

4. COMPUTING $\operatorname{spec}\left(\operatorname{IR} \mathbf{P}^{1}, \mathbf{E}_{0}\right)$

Let M be a Riemannian manifold and $\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ its LaplaceBeltrami operator (on functions). Let $x \in M$ and $f \in C^{\infty}(M)$; let also $\left\{X_{i}\right\}_{1 \leqq i \leqq n}$ be an orthonormal basis in $T_{x}(M)$, where $n=\operatorname{dim}(M)$. Next we consider the geodesies $a_{i}, 1 \leqq i \leqq n$, of M determined by the initial data $\left(x, X_{i}\right)$, respectively. We shall use the well known formula :

$$
\begin{equation*}
(\Delta f)(x)=-\left.\sum_{i=1}^{n} \frac{d^{2}}{d t^{2}}\left[f \circ a_{i}\right]\right|_{t=0} \tag{4.1}
\end{equation*}
$$

As a consequence of (4.1), the Laplace operator $\Delta: C^{\infty}\left(I R P^{1}\right) \rightarrow C^{\infty}\left(I R P^{1}\right)$ associated with E_{0} is expressed by :

$$
\begin{equation*}
(\Delta f)\left(P_{0}\right)=-\left.\frac{d^{2}}{d t^{2}}[f \circ a]\right|_{t=0} \tag{4.2}
\end{equation*}
$$

where a is the geodesic of $\left(I R P^{1}, E_{0}\right)$ with the initial data $\left(P_{0}, X_{0}\right)$. Since X_{0} must be a unit tangent vector (with respect to $g^{+}\left(P_{0}\right)$) its component \underline{X}_{0} is expressed by $\underline{X}_{0}=\left(1-x_{0}^{2}\right)^{-1}$. Therefore, by (3.5), the geodesic a might be written :

$$
\begin{equation*}
\underline{a}(t)=\tan \left(t+t_{0}\right),|t|<\varepsilon \tag{4.3}
\end{equation*}
$$

where $t_{0}=\arcsin x_{0}$. Then (4.2) transforms into

$$
\Delta f=-\left[\cos t_{0}\right]^{-4}\left[\frac{d^{2} f}{d \eta^{2}}+\sin \left(2 t_{0}\right) \frac{d f}{d \eta}\right]
$$

or, after some computation, one obtains the formula (1.1), for any $f \in C^{\infty}\left(I R P^{1}\right)$. Now the problem $\Delta f=\lambda f$ is equivalent to :

$$
\begin{equation*}
f^{\prime \prime}(x)+\frac{2 x}{1+x^{2}} f^{\prime}(x)+\frac{\lambda}{\left(1+x^{2}\right)^{2}} f(x)=0 . \tag{4.4}
\end{equation*}
$$

Towards the self-adjoint form of (4.4) one substitutes $t=\arctan x, y(t)=f(x)$; this procedure yields :

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\lambda y=0, \quad|t|<\frac{\pi}{2}-\varepsilon, \quad \varepsilon>0 \tag{4.5}
\end{equation*}
$$

Finally, cf. e.g. [${ }^{11}$], the general solution of (4.5) is $y(t)=c_{1} t+c_{2}$ if $\lambda=0$, $y(t)=c_{1} \cos (\sqrt{\lambda} t)+c_{2} \sin (\sqrt{\lambda} t)$ if $\lambda>0$, and $y(t)=c_{1} \operatorname{ch}(\sqrt{-\lambda} t)+$ $+c_{2} \operatorname{sh}(\sqrt{-\lambda} t)$ if $\lambda<0$, where $c_{1}, c_{2} \in I R$. If one assigns the boundary conditions $y\left(-\frac{\pi}{2}+\varepsilon\right)=A, y\left(\frac{\pi}{2}-\varepsilon\right)=B$, then, provided for instance that $\lambda>0$, one obtains $\lambda=\lambda_{n}, n \in \mathbf{Z}$, where λ_{n} is given by our (1.2) while $\alpha=\arccos k, k=\frac{A+B}{2 c_{1}}, c_{1} \neq 0,|k|<1$.

BIBLIOGRAPHY

[1] AKBAR-ZADEH, H .
[${ }^{2}$] DRAGOMIR, S .
[${ }^{3}$] DRAGOMIR, S .
[${ }^{4}$] DRAGOMIR, S . and IANUS, S.
[] GRIFONE, J.
[${ }^{6}$] HOJO, S .
: Les espaces de Finsler et certaines de leurs généralisations, Ann. Sci. Ecole Norm. Sup. (3) 80 (1963), 1-79.
: On Finsler manifolds with complete horizontal leaves, Seminarberichte, Fachbereich Mathematik und Informatik, 25 (1986), 39-55.
: Submanifolds of Finsler spaces, Conferenze del Seminario di Matem. delfUniv. di Bari 217 (1986), 1-15.
: On the holomorphic sectional curvature of Kaehlerian Finsler spaces, I-II, Tensor, N.S. 39 (1982), 95-98, Rendiconti di Matem. (4) 3 (1983), 757-763.
: Structure presque tangente et connexions, I-II, Ann. Inst. Fourier (1) 22 (1972), 287-334.
: On geodesics of certain Finsler metrics, Tensor, N.S. 34 (1980), 211-217.

[${ }^{7}$]	MATSUMOTO, M.	: Foundations of Finster geometry and special Finsler spaces, Kasheisha Press, Kyoto, 1986.
[${ }^{\text {8 }}$]	MATSUMOTO, M. and SHIMADA, H.	On Finsler spaces with 1 -form metric, II. BerwaldMoor's metric $L=\left(y^{1} y^{2} \ldots y^{n}\right)^{1 / n}$, Tensor, N.S. 32 (1978), 275-278.
[${ }^{9}$]	MISHRA, R.S. and PANDE, H.D.	: Conformai identities, Ìst. Üniv. Fen Fak. Mec. Seri A, 31 (1966), 39-48.
[${ }^{10}$]	NUMATA, S.	: On the torsion tensors $R_{h j k}$ and $P_{h / k}$ of Finsler spaces with a metric $d s=\left(g_{i j}(d x) d x^{i} d x^{i}\right)^{1 / 2}+$ $+b_{i}(x) d x^{i}$, Tensor, N.S. 32 (1978), 27-31.
[${ }^{11}$]	RABENSTEIN, A.L.	: Introduction to ordinary differential equations, Acad. Press, New York, 1972.
[${ }^{2}$]	RANDERS, G.	: On an asymmetric metric in the four-space of general relativity, Phys. Rev., (2) 59 (1941), 195-199.
$\left[{ }^{13}\right]$	RUND, H .	: The differential geometry of Finsler spaces, Springer Verlag, Berlin, 1959.
[${ }^{44}$]	SHIBATA, C.	: On Finster spaces with Kroplna metric, Rep. Math. Phys., 13 (1978), 117-128.
[${ }^{\text {ª }}$]	SHIMADA, H.	: On Finsler spaces with the metric $L=m \sqrt{a_{i_{1} i_{2}} \cdots i_{m}(x)} y^{i_{1}} y^{i_{2}} \ldots y^{i_{m}}$ Tensor, N.S. 33 (1979), 365-372.
[${ }^{15}$]	WRONA, W.	: Neues Beispiel einer Finslerschen Geometrie, Prace Mat. Fiz., 46 (1938), 281-290.

UNIVERSTTA DEGLI STUDI DI BARI
DIPARTIMENTO DI MATEMATICA
VIA G.FORTUNATO, CAMPUS UNIVERSITARIO
70125 BARI, ITALY

\ddot{O} Z ET

Bu çalşmada, S^{1} birim dairesi üzerinde $I R^{2}$ nin Wrona metriği yardımıyla oluşturulan E metriğinin, Riemann metriği olduğu ispat edilmektedir.

