Istanbyl Univ. Fen Fak, Mat. Der. 4% (1987-1989), 77-83 77

INDUCED RIEMANNIAN METRICS ASSOCIATED WITH THE
WRONA METRIC '

S. DRAGOMIR - A. FARINOLA

The metric E induced on the unit circle §* by the Wrona metric of
IR? is shown to be Riemannian. The real projective line gets an induced
Riemannian metric E, via the fibration &> IR P'; we determine the
geodesies of (IR PY, Ey), derive the Laplace-Beltrami operator (on functions)
of E, and compute its positive eigen-values.

1. INTRODUCTICN

Let M be an n-dimensional €= -differentiable connected manifold. Denote
by T(M) - M the tangent bundle over M; let also j: M — T (M),
Jx)=0,e T,(M), x ¢ M, be the natural imbedding of M in T(M) as the
zero-section. We put V(M) = T(M) — j(M), and denote by n: F(M) — M the
natural projection. Then V(M) is open in T (M), and consequently is a
2n-dimensional C=-differentiable manifold in a natural way. Let D be a subset
of T(M) such that &k >0, # € D yields kue D. Then a Finslerian energy on
M is amap E: D —» [0, 4 o) obeying the following axioms :

i) E@=0 iff uc jlM),
i) Ee C°D—jM), Ec CUD) (it is assumed that j(M) c D),
i) E(ku) = k* E(w), for any k>0, we D (ie. E is positively

homogeneous of degree 2) ; finally, iv) if (U, x) are local coordinates on M
and (7' (U), x', ¥ are induced local coordinates on V(M) then, for any

1 - . v -
ue DN ' (U) one requests g, (4) = 785 d; £ to be a positive definite

quadratic form. Here a = a—ay; . A copy (M, E) is refered to as a Finsler space.

Eversince the basis of Finsler geometry have been settled, cf. e.g. HRUND,
[**], there have been recognized various classes of Finsler spaces, such as locally
Minkowski spaces, [7, p.153], Berwald and Landsberg spaces, [*, p.160], etc.
These spaces are distinguished in that they are to satisfy certain tensor identities
in terms of their Cartan or Berwald connections, see [, p.108-115]. Yet few
significant explicit examples of Finsler (non-Riemannian) metrics are available
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in the existing literature. Among these we may mention Randers’ metric, cf.
[12], [*], Berwald-Moor’s metric, cf. [¢], eic.; both are only semi-definite and
lead to applications in general relativity. Also we should cite K.Okubo’s method,
cf. [, p.108], to produce Finsler metrics with a prescribed indicatrix. About
fifty years ago, W.WRONA, cf. [*¢, p.281], has proposed the following Finsler
metric in the real plane JR?>: The distance between two points P, @ of IR? is

defined to be the number g—% where PQ, OS5 are Euclidean measures of length

and OSF is the perpendicular from a fixed origin O in IR? to the segment PQ. The
PO

quantity o5 is to measure the “length” of the segment FPQ as the direction
of PQ varies, i.e. in a “Finslerian” way; clearly, any line passing through © has
no length measure defined on it. The example of W.Wrona has been further gen-
eralized by S;HOJO, [*]. In the present paper, if L is the Wrona metric of IR?,
we consider the metric induced by L on the standard unit circle 5* ; this appears
to be Riemannian. Consequently the real projective line IR P* gets a naturally
induced (via the fibration §-» IR P') Riemannian structure E,.An explicit
determination of the geodesies of (IR P', E,) is performed. As an application of

this we derive the Laplace-Beltrami operator associated with E, , i.e.
d?* d
Af=— Q| O N A
dn? 1+ dn

where 1) stands for the local coordinate on JR P!. As an attempt to compute
Spec (JR P!, E)) we find : '

(1.1

2 4 2
A, = EATZO , neZ (1.2)
T
— —g
2
whenever A >0, for some o> 0, & >0, i.e. one determines the positive

cigen-values of (1.1).
2. THE INDUCED METRIC ON &!

Tet 5! be the unit circle in /R*; let (x,y) be cartesian coordinates
on [R?> and (x,y, %, ») the induced coordinates on T(JR?) = IR*. We set
D={(x,y, %, |xP-—-px+0}; then IR® carrics the Finsler metric
L:D— [0, -} oo} given by:

3+ 5

i S A @1
27 — 55|

L(x,p, %, 7) =

i.e. in the terminology of our § 1, E = I? is a Finsler energy on JR?. Then (2.1)
is refered to as the Wrona metric of the plane. See ['9] and [7, p.107].
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Generally, if (M, E) is a Finsler space and v : N —> M an immersion of a
given differentiable manifold N in M, then N carries an induced Finsler energy
E = E o vy, where v, denotes the differential of y. Thus N turns into a Finsler
space itself, and it is an open problem to classify the immersions y for which
E is Riemannian. In order to compute L o i, , where i : 8! —» IR? denotes the
canonical inclusion, we cover S* with the atlas {(U*,#%),(U~,4#7),(L 4, A, )W(U_, A1)},
where U+ = {(x, (/1 - )| —1<x <1}, U_= {(x, V13| -1<x <1},
Uy = VT3, p) | —l<y<l}, U={(—VT—y%, »]|—1<y<1},
while by : Ut — IR, i :U"— IR, hy U, — IR and h_:U_— IR are given
by k¥ =plo*t. - =plov- > by =DPylu, s ho=py|ly_ where p,: IR®—>IR
stand for the natural projections. Let &, : T(fR?) — IR? be the natural projection.
Then T*+(SY) = =, (UY), T°(SY) = =1 (UD), T.(S8YH == (U,
T(SY) = n, 7t (U_) is an open cover of T(5!). Tangent vectors X on S? at
(x,y) € S* are precisely those X e Ty, ,(RY) with X(F)=0, where
F(x,y) = x*+ 3y — 1. Suppose (x,y) e U"; then T, ,(S") is spanned by

9 _*x3 ,y =/ 1—x2, —1<x<1. Let {€s}1=4<4 be the canonical
x|y ¥V ¥ Gp
linear basis of IR*. Let us identify 9 R K with e, , e, respectively.
9 x (xa) ay (x:y)
Therefore THSY) = %(x,\/l —x2, A, — —\/—13‘;—“7)\,)[ —l<x<1l,AeIR( .
—X

Set IR* = IR —{0}. We set V(5') = T(5"') — 0. Let then = be the restriction of
m, to V(SY). Therefore VH(SH)=n"t (U), V(§HY=n""(U"), V,(SH)=n"" (U,),
V_(SY) = n~! (U_) are chart domains of an atlas of ¥{(S") as follows: We put
HY: PH(SY)— IR?, H+(x,\/ 1—x%, 0, — W’C_zx) =(xA,—l<x<l,
—X
aelR*. Clearly VH(S8Y) = THSY) N D. Let E= I? be the energy function
associated with the Lagrangian (2.1). Let £% be the local expression of E| sy
12

The read-

2"

with respect to the local chart (FH(SY), H*). Then E*(x, ) = N

er might establish, as an exercise, the similar expressions of E~, E, , E_
2 B+
{definitions are obvious). Note that

FEY is a function of positional arguments

only, i.e. the metric induced by (2.1) on S| is Riemannian.

Let IR P! be the real projective line. We cover IR P! with the atlas

{(U; , )} j12 - Here U; consists of all lines L= {t&]te IR*},Ee St,
1

= (&',E%, &/ + 0. Consider for instance W,: U, = IR, y,(L;) = % =n.

Next we consider the fibration p : $*—> IR P! and denote by p the local expression
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of p,ie. p:(~1,1)=> IR, p=,opo (7). Note that p(x)=x(1 — x2)~/2
and its Jacobian is given by dp/dx = (1 — x?)7372,

3. THE INDUCED METRIC ON IR P!

Let & e §', Po=Ly, & IRP1. X & e Ut b= (x,V1 ), &t
x:(—e,8)—(—1,1) be a differentiable function, such that x (0) = x,. Then
Ci(—ee)—=Ut,C) =@, VI-x®?), [t|<e, is a curve in §' with
C(0) =&,. Therefore a:(—-¢e,8)~>U,, a(t)= L¢y, is a curve in IR P!
with @(0) = P, . Next, we peed to determine the tangent space 77, (/R PY).
Let a(t)e U, , || <e,8>0, be a curve; let a=,°a be its local expression.
Note that a(t) = x(1)(1 —x ()2, |¢| <e. Let C(x)) be the space of all
smooth functions x:(—e,e)—»(—1,1) with x{(0)=x,. Then we obtain

_ d
Tp,({RPY) = %%;E_(O) {1 — xz) 3/2¥ = C(XO)% . We set V({IRPY =
1 [Py

T(IR PY)—{0} and denote by p: V(IR P')—> IR P! the natural projection. Let
(P~ (U,),¢,) be the local chart induced on V(IRPY) by (U,,v,), ie
¢, :pt(U,) — IR* is given by
dx 4 O dx
(0 (1 —x* 32 Y = x {1 —2x2 —1[257_ M{1—x2)y32)| = , 0.
¢z(dt<)< o ) (ﬂ( 5, 0 -2 ) (n, 1)

Let dp be the local expression of the differential dp, i.e. the following
diagram is commutative :

Pt (§1) ——e———s> p~™ (U)
dp

s b,

x,MelR? ———— IRE3(n,7)
dp

Note that dp (x,A) = (x[1 — K2 AL — XF7%2), (x| << 1, Ae IR*. Clearly
dp is an isomorphism on the fibres; its inverse might be locally written :

x=n -+, A=90+H72. (3.1)
We may consider the energy function :
Eg(n, 1) =E*(x, ) (3.2)

where x, A are given by (3.1). Therefore IR P! carries the Riemannian metric
locally expressed by EY (n. 1) =10 4+ ©)2. The associated metric tensor has
the (local) component g™ () = (1 + 1¥)~2. Thus the (local) component of the:
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Levi-Civita connection of (JR P!, E,;) might be computed from I“”“('r]):iJr v(n),
g

-+ :

where yt(n) = —; %gﬁ is the Christoffel symbol of the first kind; one obtains
7

Tt =—200+m97".

At this point we may find all -the geodesics of (JR P!, E,); the equation of

2 2N

the geodesics reads Z—f- + T [a()] (?) ={) and this is equivalent to :
t t

dx , _* (iiﬁ)zxo. (3.3)

dir 1-x\dt
. d . g
The initial conditions a(0) = P, , ;{E 0 =X,, X,ep (L), & e U, or
t

d

a(0) = x, (1 — x2y12, da 0) =X,, where X, =X, —| , furnish:
0 et a'ﬂ Py
xO =%, O -%0-7, (3.4
Integration of (3.3) with the initial data (3.4) leads to :
x(f) =sin [X, (1 —xp) ¢ -+ arcsinx, ], [t]<s (3.9

for some ¢ > 0.

4. COMPUTING Spec (IRP!, E)

Let M be a Riemannian manifold and A ; O (M) —» C= (M) its Laplace-
Beltrami operator (on functions). Let x € M and fe C= (M); let also
{X}1<i=n be an orthonormal basis in T, (M), where n = dim (). Next we
consider the geodesies ¢;, 1 =7 =n, of M determined by the initial data
(x, X;), respectively. We shall use the well known formula :

BSY ) = — Z C% [fo @l emo. @1
i=1

As a consequence of (4.1), the Laplace operator A:C= (IR Pl)—> C= (IR PY
associated with E, is expressed by :

dZ
AF)(Py) = — ey [fod] (4.2)

fe=0

where a is the geodesic of (/R P!, E;) with the initial data (P,, X;). Since X, must
be a unit tangent vector (with respect to g* (P,)) its component X is expressed
by X, = (1 — x2)7'. Therefore, by (3.5), the geodesic @ might be written :
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a(t) =tan(r 1), lt]<e 4.3)
where ¢, = arcsin x, . Then (4.2) transforms into

Af= —[cos 1] [ ;{;{ + 8in (21,) ;%] ,

or, after some computation, one obtains the formula (1.1), for any fe C*(IR PY).
Now the problem Af== )f is equivalent to :

2x A
oy + — )+ ————f(x)=0. 4.4
F@ TS0 W (4.4)
Towards the self-adjoint form of (4.4) one substitutes t = arctan x, y(t) = f(x);
this procedure yields :
d*y T
—_— - Ay=0, |ti<——8&, £>0. 4.5
= ¥ <~ (4.5)

Finally, cf. e.g. ['], the general solution of (4.5) is y(t) =¢, t 4 ¢, if A=0,
y(£) = ¢, cos (N 1) + ¢, sin (VA1) if A >0, and y(t)=c,ch(V —ar) +
+ ¢, sh (V — A1) if A< 0, where ¢;,¢0,€ IR If one assigns the boundary

conditions y (— % —+ a) =4,y (% — s) == B, then, provided for instance that

A >0, one obtains A =2A,, neZ, where A, is given by our (1.2) while

A+ B
o = arccos k, k _ At . #0, |k|<1.
2¢
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OZET
Bu ¢aligmada, ST birim dairesi fizerinde JR® nin Wrona metrigi yar-

dumyla ologturulan F metriginin, Riemann metrigi oldugn ispat edilmek-
tedir.
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